We use cookies to enhance the usability of our website. If you continue, we'll assume that you are happy to receive all cookies. More information. Don't show this again.
General description of the gene and the encoded protein(s) using information from HGNC and Ensembl, as well as predictions made by the Human Protein Atlas project.
Gene namei
Official gene symbol, which is typically a short form of the gene name, according to HGNC.
Assigned HPA protein class(es) for the encoded protein(s).
Disease related genes Human disease related genes Potential drug targets Transporters
Predicted locationi
All transcripts of all genes have been analyzed regarding the location(s) of corresponding protein based on prediction methods for signal peptides and transmembrane regions.
Genes with at least one transcript predicted to encode a secreted protein, according to prediction methods or to UniProt location data, have been further annotated and classified with the aim to determine if the corresponding protein(s) are secreted or actually retained in intracellular locations or membrane-attached.
Remaining genes, with no transcript predicted to encode a secreted protein, will be assigned the prediction-based location(s).
The annotated location overrules the predicted location, so that a gene encoding a predicted secreted protein that has been annotated as intracellular will have intracellular as the final location.
Gene information from Ensembl and Entrez, as well as links to available gene identifiers are displayed here. Information was retrieved from Ensembl if not indicated otherwise.
Chromosome
3
Cytoband
p25.3
Chromosome location (bp)
11272309 - 11557665
Number of transcriptsi
Number of protein-coding transcripts from the gene as defined by Ensembl.
Useful information about the protein provided by UniProt.
E1-like activating enzyme involved in the 2 ubiquitin-like systems required for cytoplasm to vacuole transport (Cvt) and autophagy. Activates ATG12 for its conjugation with ATG5 as well as the ATG8 family proteins for their conjugation with phosphatidylethanolamine. Both systems are needed for the ATG8 association to Cvt vesicles and autophagosomes membranes. Required for autophagic death induced by caspase-8 inhibition. Facilitates LC3-I lipidation with phosphatidylethanolamine to form LC3-II which is found on autophagosomal membranes 1. Required for mitophagy which contributes to regulate mitochondrial quantity and quality by eliminating the mitochondria to a basal level to fulfill cellular energy requirements and preventing excess ROS production. Modulates p53/TP53 activity to regulate cell cycle and survival during metabolic stress. Also plays a key role in the maintenance of axonal homeostasis, the prevention of axonal degeneration, the maintenance of hematopoietic stem cells, the formation of Paneth cell granules, as well as in adipose differentiation. Plays a role in regulating the liver clock and glucose metabolism by mediating the autophagic degradation of CRY1 (clock repressor) in a time-dependent manner (By similarity)....show less
Biological process (UniProt)i
Keywords assigned by UniProt to proteins because they are involved in a particular biological process.
Autophagy, Biological rhythms, Protein transport, Transport, Ubl conjugation pathway
Gene summary (Entrez)i
Useful information about the gene from Entrez
This gene encodes an E1-like activating enzyme that is essential for autophagy and cytoplasmic to vacuole transport. The encoded protein is also thought to modulate p53-dependent cell cycle pathways during prolonged metabolic stress. It has been associated with multiple functions, including axon membrane trafficking, axonal homeostasis, mitophagy, adipose differentiation, and hematopoietic stem cell maintenance. Alternative splicing results in multiple transcript variants. [provided by RefSeq, Sep 2015]...show less
PROTEIN INFORMATIONi
The protein information section displays alternative protein-coding transcripts (splice variants) encoded by this gene according to the Ensembl database.
The Splice variant identifier links to the Ensembl website protein summary for the selected splice variant. The data in the Swissprot and TrEMBL columns links to corresponding pages in the UniProt database.
The protein classes assigned to this protein are shown if expanding the data in the protein class column. Parent protein classes are in bold font and subclasses are listed under the parent class.
The length of the protein (amino acid residues according to Ensembl), molecular mass (kDalton), predicted signal peptide and number of predicted transmembrane region(s) according to in-house majority decision methods based on sets of predictors are also reported.
Transporters SPOCTOPUS predicted membrane proteins Predicted intracellular proteins Intracellular proteins predicted by MDM and MDSEC Disease related genes Potential drug targets Human disease related genes Nervous system diseases Neurodegenerative diseases Mapped to neXtProt neXtProt - Evidence at protein level Protein evidence (Kim et al 2014) Protein evidence (Ezkurdia et al 2014)
Transporters SPOCTOPUS predicted membrane proteins Predicted intracellular proteins Intracellular proteins predicted by MDM and MDSEC Disease related genes Potential drug targets Human disease related genes Nervous system diseases Neurodegenerative diseases Mapped to neXtProt neXtProt - Evidence at protein level Protein evidence (Kim et al 2014) Protein evidence (Ezkurdia et al 2014)
Predicted intracellular proteins Intracellular proteins predicted by MDM and MDSEC Human disease related genes Nervous system diseases Neurodegenerative diseases Protein evidence (Ezkurdia et al 2014)
Predicted intracellular proteins Intracellular proteins predicted by MDM and MDSEC Human disease related genes Nervous system diseases Neurodegenerative diseases Protein evidence (Ezkurdia et al 2014)
Predicted intracellular proteins Intracellular proteins predicted by MDM and MDSEC Human disease related genes Nervous system diseases Neurodegenerative diseases Protein evidence (Ezkurdia et al 2014)
Predicted intracellular proteins Intracellular proteins predicted by MDM and MDSEC Human disease related genes Nervous system diseases Neurodegenerative diseases Protein evidence (Ezkurdia et al 2014)
Predicted intracellular proteins Intracellular proteins predicted by MDM and MDSEC Human disease related genes Nervous system diseases Neurodegenerative diseases Protein evidence (Ezkurdia et al 2014)
Predicted intracellular proteins Intracellular proteins predicted by MDM and MDSEC Human disease related genes Nervous system diseases Neurodegenerative diseases Protein evidence (Ezkurdia et al 2014)
Transporters MEMSAT3 predicted membrane proteins SPOCTOPUS predicted membrane proteins Predicted intracellular proteins Intracellular proteins predicted by MDM and MDSEC Disease related genes Potential drug targets Human disease related genes Nervous system diseases Neurodegenerative diseases Mapped to neXtProt neXtProt - Evidence at protein level Protein evidence (Kim et al 2014) Protein evidence (Ezkurdia et al 2014)
Predicted intracellular proteins Intracellular proteins predicted by MDM and MDSEC Human disease related genes Nervous system diseases Neurodegenerative diseases Protein evidence (Ezkurdia et al 2014)
SPOCTOPUS predicted membrane proteins Predicted intracellular proteins Intracellular proteins predicted by MDM and MDSEC Human disease related genes Nervous system diseases Neurodegenerative diseases Protein evidence (Ezkurdia et al 2014)
Transporters SPOCTOPUS predicted membrane proteins Predicted intracellular proteins Intracellular proteins predicted by MDM and MDSEC Disease related genes Potential drug targets Human disease related genes Nervous system diseases Neurodegenerative diseases Mapped to neXtProt neXtProt - Evidence at protein level Protein evidence (Ezkurdia et al 2014)
Transporters SPOCTOPUS predicted membrane proteins Predicted intracellular proteins Intracellular proteins predicted by MDM and MDSEC Disease related genes Potential drug targets Human disease related genes Nervous system diseases Neurodegenerative diseases Mapped to neXtProt neXtProt - Evidence at protein level Protein evidence (Ezkurdia et al 2014)