We use cookies to enhance the usability of our website. If you continue, we'll assume that you are happy to receive all cookies. More information. Don't show this again.
General description of the gene and the encoded protein(s) using information from HGNC and Ensembl, as well as predictions made by the Human Protein Atlas project.
Gene namei
Official gene symbol, which is typically a short form of the gene name, according to HGNC.
Assigned HPA protein class(es) for the encoded protein(s).
Cancer-related genes Enzymes
Predicted locationi
All transcripts of all genes have been analyzed regarding the location(s) of corresponding protein based on prediction methods for signal peptides and transmembrane regions.
Genes with at least one transcript predicted to encode a secreted protein, according to prediction methods or to UniProt location data, have been further annotated and classified with the aim to determine if the corresponding protein(s) are secreted or actually retained in intracellular locations or membrane-attached.
Remaining genes, with no transcript predicted to encode a secreted protein, will be assigned the prediction-based location(s).
The annotated location overrules the predicted location, so that a gene encoding a predicted secreted protein that has been annotated as intracellular will have intracellular as the final location.
Gene information from Ensembl and Entrez, as well as links to available gene identifiers are displayed here. Information was retrieved from Ensembl if not indicated otherwise.
Chromosome
6
Cytoband
q23.2
Chromosome location (bp)
134169248 - 134318112
Number of transcriptsi
Number of protein-coding transcripts from the gene as defined by Ensembl.
Useful information about the protein provided by UniProt.
Serine/threonine-protein kinase which is involved in the regulation of a wide variety of ion channels, membrane transporters, cellular enzymes, transcription factors, neuronal excitability, cell growth, proliferation, survival, migration and apoptosis. Plays an important role in cellular stress response. Contributes to regulation of renal Na(+) retention, renal K(+) elimination, salt appetite, gastric acid secretion, intestinal Na(+)/H(+) exchange and nutrient transport, insulin-dependent salt sensitivity of blood pressure, salt sensitivity of peripheral glucose uptake, cardiac repolarization and memory consolidation. Up-regulates Na(+) channels: SCNN1A/ENAC, SCN5A and ASIC1/ACCN2, K(+) channels: KCNJ1/ROMK1, KCNA1-5, KCNQ1-5 and KCNE1, epithelial Ca(2+) channels: TRPV5 and TRPV6, chloride channels: BSND, CLCN2 and CFTR, glutamate transporters: SLC1A3/EAAT1, SLC1A2 /EAAT2, SLC1A1/EAAT3, SLC1A6/EAAT4 and SLC1A7/EAAT5, amino acid transporters: SLC1A5/ASCT2, SLC38A1/SN1 and SLC6A19, creatine transporter: SLC6A8, Na(+)/dicarboxylate cotransporter: SLC13A2/NADC1, Na(+)-dependent phosphate cotransporter: SLC34A2/NAPI-2B, glutamate receptor: GRIK2/GLUR6. Up-regulates carriers: SLC9A3/NHE3, SLC12A1/NKCC2, SLC12A3/NCC, SLC5A3/SMIT, SLC2A1/GLUT1, SLC5A1/SGLT1 and SLC15A2/PEPT2. Regulates enzymes: GSK3A/B, PMM2 and Na(+)/K(+) ATPase, and transcription factors: CTNNB1 and nuclear factor NF-kappa-B. Stimulates sodium transport into epithelial cells by enhancing the stability and expression of SCNN1A/ENAC. This is achieved by phosphorylating the NEDD4L ubiquitin E3 ligase, promoting its interaction with 14-3-3 proteins, thereby preventing it from binding to SCNN1A/ENAC and targeting it for degradation. Regulates store-operated Ca(+2) entry (SOCE) by stimulating ORAI1 and STIM1. Regulates KCNJ1/ROMK1 directly via its phosphorylation or indirectly via increased interaction with SLC9A3R2/NHERF2. Phosphorylates MDM2 and activates MDM2-dependent ubiquitination of p53/TP53. Phosphorylates MAPT/TAU and mediates microtubule depolymerization and neurite formation in hippocampal neurons. Phosphorylates SLC2A4/GLUT4 and up-regulates its activity. Phosphorylates APBB1/FE65 and promotes its localization to the nucleus. Phosphorylates MAPK1/ERK2 and activates it by enhancing its interaction with MAP2K1/MEK1 and MAP2K2/MEK2. Phosphorylates FBXW7 and plays an inhibitory role in the NOTCH1 signaling. Phosphorylates FOXO1 resulting in its relocalization from the nucleus to the cytoplasm. Phosphorylates FOXO3, promoting its exit from the nucleus and interference with FOXO3-dependent transcription. Phosphorylates BRAF and MAP3K3/MEKK3 and inhibits their activity. Phosphorylates SLC9A3/NHE3 in response to dexamethasone, resulting in its activation and increased localization at the cell membrane. Phosphorylates CREB1. Necessary for vascular remodeling during angiogenesis. Sustained high levels and activity may contribute to conditions such as hypertension and diabetic nephropathy. Isoform 2 exhibited a greater effect on cell plasma membrane expression of SCNN1A/ENAC and Na(+) transport than isoform 1....show less
Molecular function (UniProt)i
Keywords assigned by UniProt to proteins due to their particular molecular function.
Keywords assigned by UniProt to proteins because they are involved in a particular biological process.
Apoptosis, Stress response
Ligand (UniProt)i
Keywords assigned by UniProt to proteins because they bind, are associated with, or whose activity is dependent of some molecule.
ATP-binding, Nucleotide-binding
Gene summary (Entrez)i
Useful information about the gene from Entrez
This gene encodes a serine/threonine protein kinase that plays an important role in cellular stress response. This kinase activates certain potassium, sodium, and chloride channels, suggesting an involvement in the regulation of processes such as cell survival, neuronal excitability, and renal sodium excretion. High levels of expression of this gene may contribute to conditions such as hypertension and diabetic nephropathy. Several alternatively spliced transcript variants encoding different isoforms have been noted for this gene. [provided by RefSeq, Jan 2009]...show less
PROTEIN INFORMATIONi
The protein information section displays alternative protein-coding transcripts (splice variants) encoded by this gene according to the Ensembl database.
The Splice variant identifier links to the Ensembl website protein summary for the selected splice variant. The data in the Swissprot and TrEMBL columns links to corresponding pages in the UniProt database.
The protein classes assigned to this protein are shown if expanding the data in the protein class column. Parent protein classes are in bold font and subclasses are listed under the parent class.
The length of the protein (amino acid residues according to Ensembl), molecular mass (kDalton), predicted signal peptide and number of predicted transmembrane region(s) according to in-house majority decision methods based on sets of predictors are also reported.
Enzymes ENZYME proteins Transferases Kinases AGC Ser/Thr protein kinases MEMSAT3 predicted membrane proteins MEMSAT-SVM predicted membrane proteins SPOCTOPUS predicted membrane proteins Predicted intracellular proteins Intracellular proteins predicted by MDM and MDSEC Cancer-related genes Mutated cancer genes Mutational cancer driver genes Mapped to neXtProt neXtProt - Evidence at protein level Protein evidence (Kim et al 2014) Protein evidence (Ezkurdia et al 2014)
Enzymes ENZYME proteins Transferases Kinases AGC Ser/Thr protein kinases MEMSAT3 predicted membrane proteins MEMSAT-SVM predicted membrane proteins SPOCTOPUS predicted membrane proteins Predicted intracellular proteins Intracellular proteins predicted by MDM and MDSEC Cancer-related genes Mutated cancer genes Mutational cancer driver genes Mapped to neXtProt neXtProt - Evidence at protein level Protein evidence (Ezkurdia et al 2014)
Enzymes ENZYME proteins Transferases Kinases AGC Ser/Thr protein kinases MEMSAT3 predicted membrane proteins MEMSAT-SVM predicted membrane proteins SPOCTOPUS predicted membrane proteins Predicted intracellular proteins Intracellular proteins predicted by MDM and MDSEC Cancer-related genes Mutated cancer genes Mutational cancer driver genes Mapped to neXtProt neXtProt - Evidence at protein level Protein evidence (Kim et al 2014) Protein evidence (Ezkurdia et al 2014)
Enzymes ENZYME proteins Transferases Kinases AGC Ser/Thr protein kinases MEMSAT3 predicted membrane proteins MEMSAT-SVM predicted membrane proteins SPOCTOPUS predicted membrane proteins Predicted intracellular proteins Intracellular proteins predicted by MDM and MDSEC Cancer-related genes Mutated cancer genes Mutational cancer driver genes Mapped to neXtProt neXtProt - Evidence at protein level Protein evidence (Kim et al 2014) Protein evidence (Ezkurdia et al 2014)
Predicted intracellular proteins Intracellular proteins predicted by MDM and MDSEC Cancer-related genes Mutated cancer genes Mutational cancer driver genes Protein evidence (Ezkurdia et al 2014)
Predicted intracellular proteins Intracellular proteins predicted by MDM and MDSEC Cancer-related genes Mutated cancer genes Mutational cancer driver genes Protein evidence (Ezkurdia et al 2014)
MEMSAT-SVM predicted membrane proteins SPOCTOPUS predicted membrane proteins Predicted intracellular proteins Intracellular proteins predicted by MDM and MDSEC Cancer-related genes Mutated cancer genes Mutational cancer driver genes Protein evidence (Ezkurdia et al 2014)
Q7Z3I4 [Direct mapping] Serine/threonine-protein kinase Sgk1; Uncharacterized protein DKFZp686H1615
Show all
Predicted intracellular proteins Intracellular proteins predicted by MDM and MDSEC Cancer-related genes Mutated cancer genes Mutational cancer driver genes Protein evidence (Ezkurdia et al 2014)
Enzymes ENZYME proteins Transferases Kinases AGC Ser/Thr protein kinases MEMSAT-SVM predicted membrane proteins SPOCTOPUS predicted membrane proteins Predicted intracellular proteins Intracellular proteins predicted by MDM and MDSEC Cancer-related genes Mutated cancer genes Mutational cancer driver genes Mapped to neXtProt neXtProt - Evidence at protein level Protein evidence (Kim et al 2014) Protein evidence (Ezkurdia et al 2014)
Predicted intracellular proteins Intracellular proteins predicted by MDM and MDSEC Cancer-related genes Mutated cancer genes Mutational cancer driver genes Protein evidence (Ezkurdia et al 2014)