Primary cilium

The primary cilium is a sensory antenna-like organelle that extends as a solitary unit from the surface of nearly all vertebrate cell types. The presence of single non-motile cilia in vertebrate cells was first reported in the end of the 19th century by K.W. Zimmermann, who also suggested it to have a sensory role . The term “primary cilium” was later introduced by S. Sorokin. At the base of primary cilia is the basal body, which is formed from one of the centrioles of the centrosome after docking to the plasma membrane. Examples of proteins localizing to the primary cilium or the basal body can be seen in Figure 1.

In the subcellular resource, 653 genes (3% of all human protein-coding genes) have been shown to encode proteins that localize to primary cilia or basal bodies (Figure 2). A Gene Ontology (GO)-based functional enrichment analysis of genes encoding proteins in these compartments shows an enrichment of genes associated with biological processes related to assembly and organization of primary cilia, cell signaling and cell motility. Approximately 99% (n=648) of the proteins that localize to primary cilia or basal bodies can also be detected in additional cellular compartments, with the most common additional localizations being microtubules and centrosomes.


CFAP300 - hTERT-RPE1 (serum starved)

CKAP2 - ASC52telo

SMAD7 - RPTEC/TERT1

Figure 1. Examples of proteins localized to the cilium or basal body. CFAP300 is a cilium- and flagellum-specific protein that plays a role in axonemal structure organization and localizes specifically to the primary cilium. CKAP2 is a cytoskeleton-associated protein localizing to some cilia and engaging in cell-cycle regulation. SMAD7 is known to localize to the basal body and has been proposed to limit excessive GPCR signaling through controlling GPCR transport into and out of the cilium.

  • 3% (653 proteins) of all human proteins have been experimentally detected in the primary cilium by the Human Protein Atlas.
  • 131 proteins in the primary cilium are supported by experimental evidence and out of these 3 proteins are enhanced by the Human Protein Atlas.
  • 648 proteins in the primary cilium have multiple locations.
  • 368 proteins in the primary cilium show single cell variation.

  • Proteins localizing to primary cilia are mainly involved in ciliognesis, cell signalling and cell motility.

Figure 2. 3% of all human protein-coding genes encode proteins that have been shown to localize to the nucleoplasm. Each bar is clickable and gives a search result of proteins that belong to the selected category.

The structure of the primary cilium

Substructures

  • Primary cilium: 384
  • Primary cilium tip: 55
  • Primary cilium transition zone: 88
  • Basal body: 401

Primary cilia are small antenna-like organelles that protrude from the surface of the majority of human cell types. In contrast to motile cilia, there is only one primary cilium in each cell. The primary cilium consist of a microtubule-based axoneme that extends the basal body, which is modified from the mother centriole of the centrosome, and is enclosed by a lipid bilayer. The microtubules of the axoneme forms a ring of nine doublets pairs, without any central pair as usually seen in motile cilia (9+0). However, recent studies indicate that this organisation is disrupted towards the tip of the cilium. The basal body is formed from the mother centriole and several additional protein components. It anchors the primary cilium to the cell body though pinwheel-shaped transition fibers (distal appendages), anchored to the membrane, and basal feet (subdistal appendages), anchchored to cytoplasmic microtubules. These are followed by a region referred to as the transition zone, in which the axonemal microtubules are connected to the ciliary membrane through multiple Y-links. The transition zone together with the transition fibers give rise to a selective barrier for diffusson of both soluble and membrane-bound proteins between the cell body and the primary cilium. Similarly, while the ciliary membrane is continuous with the plasma membrane, it has a distinct composition of lipids as well as proteins. The border between the plasma membrane and the primary cilium membrane is referred to as the periciliary membrane, and in some cell types it is invaginated to form a ciliary pocket (Mill P et al. (2023)).

The length of primary cilia varies extensively across the cell cycle, as well as between different cell types, ranging from few (e.g. chondrocytes) up to several tens of micrometres (e.g. kidney epithelial cells and neurons). In addition, there is evidence that the length of the primary cilia can be modified in response to specific environmental cues (Macarelli V et al. (2023)).

Primary cilia appear on non-dividing differentiated cells but also on stem and progenitor cells that are in the G1/G0 phases of the cell cycle (Satir P et al. (2010)). Assembly, elongation and disassembly is highy coordinated with the cell cycle. Before cell division, primary cilia are dismantled and the basal body is released to assume its role as a centriole during mitotic spindle assembly. New primary cilia are built again on each daughter cell once the cells are in the G1 or G0 phase. At the beginning of ciliogenesis the mother centriole migrates to the cell surface, docks onto the plasma membrane and transitions to a basal body. Then microtubules nucleate at the basal body to initiate the formation of the axoneme. For mesenchymal cells, formation of the ciliary membrane starts with fusion Golgi-derived vesicles to the mother centriole already before docking to the plasma membrane. For kidney epithelial cells, assembly of the ciliary membrane is initiated after docking at the plasma membrane. Proteins and lipids needed for furter assembly and elongation of the primary cilia membrane are in both cases transported in vesicles from the ER an Golgi compartments, and incorporated at the ciliary base by exocytosis.

Recent studies have shown that primary cilia can be highly enriched in specific signaling receptors, ion channels, and downstream effectors, for a growing number of pathways, including for example Hedgehog and WNT signalling. The protein and lipid composition of primary cilia varies across different cell types, tissues and can change in response to external developmental and homeostatic stimuli. This structural and compositional diversity requires tight control of the transport of both lipids and proteins into and out of the primary cilium, which is mediated by vesicular transport pathways as well as the intraflagellar transport (IFT) system (Taschner M et al. (2016)). The latter involves IFT-protein complexes, various adaptors, as well as microtubule-based motor proteins. In addition, lipid composition is regulated by cilia-residing enzymes.

Table 1. Selection of proteins suitable as markers for the primary cilium, primary cilium transition zone, or basal body.

Gene Description Substructure
ARL13B ADP ribosylation factor like GTPase 13B Acrosome
Basal body
Cytokinetic bridge
End piece
Equatorial segment
Microtubules
Mid piece
Primary cilium
Primary cilium transition zone
Principal piece
CFAP300 Cilia and flagella associated protein 300 Centrosome
Primary cilium
CEP350 Centrosomal protein 350 Basal body
Centrosome
End piece
Nucleoplasm
CEP164 Centrosomal protein 164 Centrosome
Equatorial segment
Nucleoplasm
Primary cilium transition zone
Principal piece
Vesicles


CFAP300 - hTERT-RPE1 (serum starved)

CFAP300 - RPTEC/TERT1

ARL13B - ASC52telo

CEP350

CEP164 - hTERT-RPE1 (serum starved)

KIF7 - ASC52telo

Figure 3. Examples showing the different staining patterns of primary cilia and basal bodies. CFAP300 is a cilium and flagellum specific protein (detected in hTERT-RPE1). ARL13B is involved in regulating the transport of certain proteins to cilia, it is present in the cytoplasm and cilium (detected in ASC52telo). CEP350 is a centrosome associated protein and since the centrosome is the core structure of the basal body, basal bodies are positive for CEP350. CEP164 is known as a part of the distal appendages of the centriole localizing in the region of the ciliary transition zone. KIF7 is in many cilia enriched at the tip of primary cilia.

The function of the primary cilium

In recent years, it has become more and more evident that primary cilia have an important role in detecting, regulating and transducing various types of information from the extracellular environment. Primary cilia are highly enriched in receptors, downstream effectors of various signaling pathways and ion channels. Depending on the spatiotemporal composition and localization of these components, they can detect and transduce a variety of signals, acting either as chemo-, mechano-, osmo- or photosensors (Nachury MV et al. (2019); Satir P et al. (2010)). The dynamic nature of the ciliary proteome may thus be important for cellular adaptation to specific developmental/homeostatic cues, thus ensuring efficient signal transduction in diverse developmental and homeostatic settings.

Primary cilia orchestrate a variety of signaling pathways (e.g. GPCR and WNT pathways) in order to regulate key developmental processes, as well as tissue plasticity and organ function in adulthood. Mutations that lead to impairment in the structure and/or function of primary cilia, or motile cilia, are associated with a group of more than 30 diseases and syndromes collectively known as ciliopathies. Ciliopathies span an overlapping and highly diverse spectrum of clinical symptoms, affecting a diverse set of organs, and are highly variable in terms of severity (Reiter JF et al. (2017); Anvarian Z et al. (2019)). Some well-studied examples of ciliopathies are polycystic kidney disease and the Bardet-Biedl syndrome, of which the latter is higly pleiotropic and shows variable expressivity even between individual patients. There are even examples in which different mutations of the same gene give rise to distinct ciliopathies demonstrating the complexity of these diseases.

Gene Ontology (GO) analysis of genes encoding proteins mainly localized to primary clia and basal bodies are well in agreement with a role for primary cilia in cell signalling pathways. The enriched terms for the GO domain Biological Process are mainly related to the assembly and organization of primary cilia, but also to cell signalling and cell motility (Figure 5a). Enrichment analysis of the GO domain Molecular Function, gives enrichment of terms related to different categories of protein binding activity and motor protein activity (Figure 5b).

Figure 5a Gene Ontology-based enrichment analysis for the primany cilium and basal body proteome showing the significantly enriched terms for the GO domain Biological Process. Each bar is clickable and gives a search result of proteins that belong to the selected category.

Figure 5b Gene Ontology-based enrichment analysis for the primany cilium and basal body proteome showing the significantly enriched terms for the GO domain Molecular Function. Each bar is clickable and gives a search result of proteins that belong to the selected category.

Primary cilium proteins with multiple locations

In the subcellular resource, approximately 99% (n=648) of the proteins that localize to primary cilia or basal bodies also localize to other cell compartments (Figure 6). The network plot shows that the most common locations shared with primary cilia are the centrosome, cytosol and microtubules. Dual localizations of primary cilium proteins to the centrosome or microtubules are overrepresented, which is expected based on the structure of primary cilia and basal bodies. Examples of multilocalizing proteins within the nucleoplasmic proteome can be seen in Figure 7.

Figure 6. Interactive network plot of primary cilia and basal body proteins with multiple localizations. The numbers in the connecting nodes show the proteins that are localized to primary cilia or basal bodies, and to one or more additional locations. Only connecting nodes containing at least 1% of the proteins in the primary cilia- and basal body proteome are shown. The circle sizes are related to the number of proteins. The cyan colored nodes show combinations that are significantly overrepresented, while magenta colored nodes show combinations that are significantly underrepresented as compared to the probability of observing that combination based on the frequency of each annotation and a hypergeometric test (p≤0.05). Note that this calculation is only done for proteins with dual localizations. Each node is clickable and results in a list of all proteins that are found in the connected organelles.


AKT1 - ASC52telo

CKAP2 - ASC52telo

CEP170 - ASC52telo

Figure 7. Examples of multilocalizing proteins in primary cilia and basal bodies. The examples show common or overrepresented combinations for multilocalizing proteins in the primary cilia and basal body proteome. AKT1 is found both at primary cilia and microtubules.CKAP2 localizes to primary cilia and the mitotic spindle. CEP170 is seen both at basal bodies and centrosomes.

Expression levels of primary cilium proteins in tissue

Transcriptome analysis and classification of genes into tissue distribution categories (Figure 8) shows that genes encoding proteins localizing to primary cilia and basal bodies have a similar distrubution across these categories as all genes with data in the subcellular resource, except that significantly fewer are undetected.

Figure 8. Bar plot showing the percentage of genes in different tissue distribution categories for nuclear protein-coding genes compared to all genes in the subcellular sesource. Asterisk marks a statistically significant deviation (p≤0.05) in the number of genes in a category based on a binomial statistical test. Each bar is clickable and gives a search result of proteins that belong to the selected category.

Relevant links and publications

Agaton C et al., Affinity proteomics for systematic protein profiling of chromosome 21 gene products in human tissues. Mol Cell Proteomics. (2003)
PubMed: 12796447 DOI: 10.1074/mcp.M300022-MCP200

Lindskog M et al., Selection of protein epitopes for antibody production Biotechniques (2005)
PubMed: 15945371 

Larsson M et al., High-throughput protein expression of cDNA products as a tool in functional genomics. J Biotechnol. (2000)
PubMed: 10908795 DOI: 10.1016/s0168-1656(00)00258-3

Uhlen M et al., A proposal for validation of antibodies. Nat Methods. (2016)
PubMed: 27595404 DOI: 10.1038/nmeth.3995

Stadler C et al., Systematic validation of antibody binding and protein subcellular localization using siRNA and confocal microscopy. J Proteomics. (2012)
PubMed: 22361696 DOI: 10.1016/j.jprot.2012.01.030

Poser I et al., BAC TransgeneOmics: a high-throughput method for exploration of protein function in mammals. Nat Methods. (2008)
PubMed: 18391959 DOI: 10.1038/nmeth.1199

Skogs M et al., Antibody Validation in Bioimaging Applications Based on Endogenous Expression of Tagged Proteins. J Proteome Res. (2017)
PubMed: 27723985 DOI: 10.1021/acs.jproteome.6b00821

Hildreth AD et al., Single-cell sequencing of human white adipose tissue identifies new cell states in health and obesity. Nat Immunol. (2021)
PubMed: 33907320 DOI: 10.1038/s41590-021-00922-4

He S et al., Single-cell transcriptome profiling of an adult human cell atlas of 15 major organs. Genome Biol. (2020)
PubMed: 33287869 DOI: 10.1186/s13059-020-02210-0

Bhat-Nakshatri P et al., A single-cell atlas of the healthy breast tissues reveals clinically relevant clusters of breast epithelial cells. Cell Rep Med. (2021)
PubMed: 33763657 DOI: 10.1016/j.xcrm.2021.100219

Lukassen S et al., SARS-CoV-2 receptor ACE2 and TMPRSS2 are primarily expressed in bronchial transient secretory cells. EMBO J. (2020)
PubMed: 32246845 DOI: 10.15252/embj.20105114

Parikh K et al., Colonic epithelial cell diversity in health and inflammatory bowel disease. Nature. (2019)
PubMed: 30814735 DOI: 10.1038/s41586-019-0992-y

Wang W et al., Single-cell transcriptomic atlas of the human endometrium during the menstrual cycle. Nat Med. (2020)
PubMed: 32929266 DOI: 10.1038/s41591-020-1040-z

Menon M et al., Single-cell transcriptomic atlas of the human retina identifies cell types associated with age-related macular degeneration. Nat Commun. (2019)
PubMed: 31653841 DOI: 10.1038/s41467-019-12780-8

Ulrich ND et al., Cellular heterogeneity of human fallopian tubes in normal and hydrosalpinx disease states identified using scRNA-seq. Dev Cell. (2022)
PubMed: 35320732 DOI: 10.1016/j.devcel.2022.02.017

Wang L et al., Single-cell reconstruction of the adult human heart during heart failure and recovery reveals the cellular landscape underlying cardiac function. Nat Cell Biol. (2020)
PubMed: 31915373 DOI: 10.1038/s41556-019-0446-7

Liao J et al., Single-cell RNA sequencing of human kidney. Sci Data. (2020)
PubMed: 31896769 DOI: 10.1038/s41597-019-0351-8

MacParland SA et al., Single cell RNA sequencing of human liver reveals distinct intrahepatic macrophage populations. Nat Commun. (2018)
PubMed: 30348985 DOI: 10.1038/s41467-018-06318-7

Tabula Sapiens Consortium* et al., The Tabula Sapiens: A multiple-organ, single-cell transcriptomic atlas of humans. Science. (2022)
PubMed: 35549404 DOI: 10.1126/science.abl4896

Wagner M et al., Single-cell analysis of human ovarian cortex identifies distinct cell populations but no oogonial stem cells. Nat Commun. (2020)
PubMed: 32123174 DOI: 10.1038/s41467-020-14936-3

Qadir MMF et al., Single-cell resolution analysis of the human pancreatic ductal progenitor cell niche. Proc Natl Acad Sci U S A. (2020)
PubMed: 32354994 DOI: 10.1073/pnas.1918314117

Chen J et al., PBMC fixation and processing for Chromium single-cell RNA sequencing. J Transl Med. (2018)
PubMed: 30016977 DOI: 10.1186/s12967-018-1578-4

Vento-Tormo R et al., Single-cell reconstruction of the early maternal-fetal interface in humans. Nature. (2018)
PubMed: 30429548 DOI: 10.1038/s41586-018-0698-6

Wang Y et al., Single-cell transcriptome analysis reveals differential nutrient absorption functions in human intestine. J Exp Med. (2020)
PubMed: 31753849 DOI: 10.1084/jem.20191130

De Micheli AJ et al., A reference single-cell transcriptomic atlas of human skeletal muscle tissue reveals bifurcated muscle stem cell populations. Skelet Muscle. (2020)
PubMed: 32624006 DOI: 10.1186/s13395-020-00236-3

Solé-Boldo L et al., Single-cell transcriptomes of the human skin reveal age-related loss of fibroblast priming. Commun Biol. (2020)
PubMed: 32327715 DOI: 10.1038/s42003-020-0922-4

Guo J et al., The adult human testis transcriptional cell atlas. Cell Res. (2018)
PubMed: 30315278 DOI: 10.1038/s41422-018-0099-2

Takahashi H et al., 5' end-centered expression profiling using cap-analysis gene expression and next-generation sequencing. Nat Protoc. (2012)
PubMed: 22362160 DOI: 10.1038/nprot.2012.005

Lein ES et al., Genome-wide atlas of gene expression in the adult mouse brain. Nature. (2007)
PubMed: 17151600 DOI: 10.1038/nature05453

Kircher M et al., Double indexing overcomes inaccuracies in multiplex sequencing on the Illumina platform. Nucleic Acids Res. (2012)
PubMed: 22021376 DOI: 10.1093/nar/gkr771

Norreen-Thorsen M et al., A human adipose tissue cell-type transcriptome atlas. Cell Rep. (2022)
PubMed: 35830816 DOI: 10.1016/j.celrep.2022.111046

Öling S et al., A human stomach cell type transcriptome atlas. BMC Biol. (2024)
PubMed: 38355543 DOI: 10.1186/s12915-024-01812-5

Siletti K et al., Transcriptomic diversity of cell types across the adult human brain. Science. (2023)
PubMed: 37824663 DOI: 10.1126/science.add7046

Uhlén M et al., The human secretome. Sci Signal. (2019)
PubMed: 31772123 DOI: 10.1126/scisignal.aaz0274

Zhong W et al., The neuropeptide landscape of human prefrontal cortex. Proc Natl Acad Sci U S A. (2022)
PubMed: 35947618 DOI: 10.1073/pnas.2123146119

Sjöstedt E et al., An atlas of the protein-coding genes in the human, pig, and mouse brain. Science. (2020)
PubMed: 32139519 DOI: 10.1126/science.aay5947

Gilvesy A et al., Spatiotemporal characterization of cellular tau pathology in the human locus coeruleus-pericoerulear complex by three-dimensional imaging. Acta Neuropathol. (2022)
PubMed: 36040521 DOI: 10.1007/s00401-022-02477-6

Uhlen M et al., A pathology atlas of the human cancer transcriptome. Science. (2017)
PubMed: 28818916 DOI: 10.1126/science.aan2507

Li Y et al., Proteogenomic data and resources for pan-cancer analysis. Cancer Cell. (2023)
PubMed: 37582339 DOI: 10.1016/j.ccell.2023.06.009

Jin H et al., Systematic transcriptional analysis of human cell lines for gene expression landscape and tumor representation. Nat Commun. (2023)
PubMed: 37669926 DOI: 10.1038/s41467-023-41132-w

Schubert M et al., Perturbation-response genes reveal signaling footprints in cancer gene expression. Nat Commun. (2018)
PubMed: 29295995 DOI: 10.1038/s41467-017-02391-6

Jiang P et al., Systematic investigation of cytokine signaling activity at the tissue and single-cell levels. Nat Methods. (2021)
PubMed: 34594031 DOI: 10.1038/s41592-021-01274-5

Sakalihasan N et al., Abdominal aortic aneurysms. Nat Rev Dis Primers. (2018)
PubMed: 30337540 DOI: 10.1038/s41572-018-0030-7

Krafcik BM et al., Changes in global mortality from aortic aneurysm. J Vasc Surg. (2024)
PubMed: 38408686 DOI: 10.1016/j.jvs.2024.02.025

Hultgren R et al., A Majority of Admitted Patients With Ruptured Abdominal Aortic Aneurysm Undergo and Survive Corrective Treatment: A Population-Based Retrospective Cohort Study. World J Surg. (2016)
PubMed: 27549597 DOI: 10.1007/s00268-016-3705-9

Shanmuganathan G et al., Diabetes and Abdominal Aortic Aneurysm: Is the Protective Effect on AAA Due to Antidiabetic Medications Alone, Due to the Disease Alone, or Both? Arch Intern Med Res. (2024)
PubMed: 38846325 DOI: 10.26502/aimr.0169

Bugiardini R et al., Traditional risk factors and premature acute coronary syndromes in South Eastern Europe: a multinational cohort study. Lancet Reg Health Eur. (2024)
PubMed: 38476741 DOI: 10.1016/j.lanepe.2023.100824

Timmis A et al., Global epidemiology of acute coronary syndromes. Nat Rev Cardiol. (2023)
PubMed: 37231077 DOI: 10.1038/s41569-023-00884-0

Shimony S et al., Acute myeloid leukemia: 2023 update on diagnosis, risk-stratification, and management. Am J Hematol. (2023)
PubMed: 36594187 DOI: 10.1002/ajh.26822

Pelcovits A et al., Acute Myeloid Leukemia: A Review. R I Med J (2013). (2020)
PubMed: 32236160 

Yi M et al., The global burden and attributable risk factor analysis of acute myeloid leukemia in 195 countries and territories from 1990 to 2017: estimates based on the global burden of disease study 2017. J Hematol Oncol. (2020)
PubMed: 32513227 DOI: 10.1186/s13045-020-00908-z

Søgaard KK et al., 30-year mortality after venous thromboembolism: a population-based cohort study. Circulation. (2014)
PubMed: 24970783 DOI: 10.1161/CIRCULATIONAHA.114.009107

O'Shea RS et al., Alcoholic liver disease. Am J Gastroenterol. (2010)
PubMed: 19904248 DOI: 10.1038/ajg.2009.593

Gao B et al., Alcoholic liver disease: pathogenesis and new therapeutic targets. Gastroenterology. (2011)
PubMed: 21920463 DOI: 10.1053/j.gastro.2011.09.002

Stickel F et al., Pathophysiology and Management of Alcoholic Liver Disease: Update 2016. Gut Liver. (2017)
PubMed: 28274107 DOI: 10.5009/gnl16477

Sharma P et al., Clinical presentation of alcoholic liver disease and non-alcoholic fatty liver disease: spectrum and diagnosis. Transl Gastroenterol Hepatol. (2020)
PubMed: 32258523 DOI: 10.21037/tgh.2019.10.02

Mathurin P et al., Corticosteroids improve short-term survival in patients with severe alcoholic hepatitis: meta-analysis of individual patient data. Gut. (2011)
PubMed: 20940288 DOI: 10.1136/gut.2010.224097

Sattar SBA et al., Bacterial Gastroenteritis StatPearls Publishing. (2024)
PubMed: 30020667 

Nierenberg AA et al., Diagnosis and Treatment of Bipolar Disorder: A Review. JAMA. (2023)
PubMed: 37815563 DOI: 10.1001/jama.2023.18588

Lane NM et al., Bipolar disorder: Diagnosis, treatment and future directions. J R Coll Physicians Edinb. (2023)
PubMed: 37649414 DOI: 10.1177/14782715231197577

Wang J et al., Progression from ductal carcinoma in situ to invasive breast cancer: molecular features and clinical significance. Signal Transduct Target Ther. (2024)
PubMed: 38570490 DOI: 10.1038/s41392-024-01779-3

Tomlinson-Hansen SE et al., Breast Ductal Carcinoma in Situ StatPearls Publishing. (2024)
PubMed: 33620843 

Chowdhury AB et al., Liver biopsy for assessment of chronic liver diseases: a synopsis. Clin Exp Med. (2023)
PubMed: 35192111 DOI: 10.1007/s10238-022-00799-z

Ginès P et al., Population screening for liver fibrosis: Toward early diagnosis and intervention for chronic liver diseases. Hepatology. (2022)
PubMed: 34537988 DOI: 10.1002/hep.32163

Heyens LJM et al., Liver Fibrosis in Non-alcoholic Fatty Liver Disease: From Liver Biopsy to Non-invasive Biomarkers in Diagnosis and Treatment. Front Med (Lausanne). (2021)
PubMed: 33937277 DOI: 10.3389/fmed.2021.615978

Asrani SK et al., Burden of liver diseases in the world. J Hepatol. (2019)
PubMed: 30266282 DOI: 10.1016/j.jhep.2018.09.014

Mukkamalla SKR et al., Chronic Lymphocytic Leukemia StatPearls Publishing. (2024)
PubMed: 29261864 

Kronmal RA et al., Risk factors for the progression of coronary artery calcification in asymptomatic subjects: results from the Multi-Ethnic Study of Atherosclerosis (MESA). Circulation. (2007)
PubMed: 17502571 DOI: 10.1161/CIRCULATIONAHA.106.674143

Roth GA et al., Global Burden of Cardiovascular Diseases and Risk Factors, 1990-2019: Update From the GBD 2019 Study. J Am Coll Cardiol. (2020)
PubMed: 33309175 DOI: 10.1016/j.jacc.2020.11.010

Begum F et al., Insight into the Tropism of Dengue Virus in Humans. Viruses. (2019)
PubMed: 31835302 DOI: 10.3390/v11121136

Blackley S et al., Primary human splenic macrophages, but not T or B cells, are the principal target cells for dengue virus infection in vitro. J Virol. (2007)
PubMed: 17928355 DOI: 10.1128/JVI.01568-07

Padala SA et al., Diffuse Large B-Cell Lymphoma StatPearls Publishing. (2024)
PubMed: 32491728 

Ramakrishnan K et al., Diagnosis and management of acute pyelonephritis in adults. Am Fam Physician. (2005)
PubMed: 15768623 

Makker V et al., Endometrial cancer. Nat Rev Dis Primers. (2021)
PubMed: 34887451 DOI: 10.1038/s41572-021-00324-8

He W et al., Attenuation of TNFSF10/TRAIL-induced apoptosis by an autophagic survival pathway involving TRAF2- and RIPK1/RIP1-mediated MAPK8/JNK activation. Autophagy. (2012)
PubMed: 23051914 DOI: 10.4161/auto.22145

Enroth S et al., A two-step strategy for identification of plasma protein biomarkers for endometrial and ovarian cancer. Clin Proteomics. (2018)
PubMed: 30519148 DOI: 10.1186/s12014-018-9216-y

Ostrom QT et al., The epidemiology of glioma in adults: a "state of the science" review. Neuro Oncol. (2014)
PubMed: 24842956 DOI: 10.1093/neuonc/nou087

Goodenberger ML et al., Genetics of adult glioma. Cancer Genet. (2012)
PubMed: 23238284 DOI: 10.1016/j.cancergen.2012.10.009

Llovet JM et al., Hepatocellular carcinoma. Nat Rev Dis Primers. (2021)
PubMed: 33479224 DOI: 10.1038/s41572-020-00240-3

Matsushita H et al., Alcohol and hepatocellular carcinoma. BMJ Open Gastroenterol. (2019)
PubMed: 31139422 DOI: 10.1136/bmjgast-2018-000260

Singal AG et al., HCC surveillance improves early detection, curative treatment receipt, and survival in patients with cirrhosis: A meta-analysis. J Hepatol. (2022)
PubMed: 35139400 DOI: 10.1016/j.jhep.2022.01.023

Tzartzeva K et al., Surveillance Imaging and Alpha Fetoprotein for Early Detection of Hepatocellular Carcinoma in Patients With Cirrhosis: A Meta-analysis. Gastroenterology. (2018)
PubMed: 29425931 DOI: 10.1053/j.gastro.2018.01.064

Bruix J et al., Management of hepatocellular carcinoma: an update. Hepatology. (2011)
PubMed: 21374666 DOI: 10.1002/hep.24199

El-Khoueiry AB et al., Nivolumab in patients with advanced hepatocellular carcinoma (CheckMate 040): an open-label, non-comparative, phase 1/2 dose escalation and expansion trial. Lancet. (2017)
PubMed: 28434648 DOI: 10.1016/S0140-6736(17)31046-2

Calderon-Martinez E et al., Prognostic Scores and Survival Rates by Etiology of Hepatocellular Carcinoma: A Review. J Clin Med Res. (2023)
PubMed: 37187717 DOI: 10.14740/jocmr4902

Royle CM et al., HIV-1 and HIV-2 differentially mature plasmacytoid dendritic cells into IFN-producing cells or APCs. J Immunol. (2014)
PubMed: 25156368 DOI: 10.4049/jimmunol.1400860

Gaitonde DY et al., Influenza: Diagnosis and Treatment. Am Fam Physician. (2019)
PubMed: 31845781 

Wu NH et al., The differentiated airway epithelium infected by influenza viruses maintains the barrier function despite a dramatic loss of ciliated cells. Sci Rep. (2016)
PubMed: 28004801 DOI: 10.1038/srep39668

Nasim F et al., Lung Cancer. Med Clin North Am. (2019)
PubMed: 30955514 DOI: 10.1016/j.mcna.2018.12.006

Buck E et al., Malaria StatPearls Publishing. (2024)
PubMed: 31869175 

Milner DA., Malaria Pathogenesis. Cold Spring Harb Perspect Med. (2018)
PubMed: 28533315 DOI: 10.1101/cshperspect.a025569

Sanyal AJ et al., Cardiovascular disease in patients with metabolic dysfunction-associated steatohepatitis compared with metabolic dysfunction-associated steatotic liver disease and other liver diseases: A systematic review. Am Heart J Plus. (2024)
PubMed: 38623572 DOI: 10.1016/j.ahjo.2024.100386

Marjot T et al., Nonalcoholic Fatty Liver Disease in Adults: Current Concepts in Etiology, Outcomes, and Management. Endocr Rev. (2020)
PubMed: 31629366 DOI: 10.1210/endrev/bnz009

Chan WK et al., Metabolic Dysfunction-Associated Steatotic Liver Disease (MASLD): A State-of-the-Art Review. J Obes Metab Syndr. (2023)
PubMed: 37700494 DOI: 10.7570/jomes23052

Hashimoto E et al., Characteristics and diagnosis of NAFLD/NASH. J Gastroenterol Hepatol. (2013)
PubMed: 24251707 DOI: 10.1111/jgh.12271

Heistein JB et al., Malignant Melanoma StatPearls Publishing. (2024)
PubMed: 29262210 

Rastrelli M et al., Melanoma: epidemiology, risk factors, pathogenesis, diagnosis and classification. In Vivo. (2014)
PubMed: 25398793 

Alruwaili AA et al., Meningioma StatPearls Publishing. (2024)
PubMed: 32809373 

Saklayen MG., The Global Epidemic of the Metabolic Syndrome. Curr Hypertens Rep. (2018)
PubMed: 29480368 DOI: 10.1007/s11906-018-0812-z

Eckel RH et al., The metabolic syndrome. Lancet. (2010)
PubMed: 20109902 DOI: 10.1016/S0140-6736(09)61794-3

Grundy SM et al., Diagnosis and management of the metabolic syndrome: an American Heart Association/National Heart, Lung, and Blood Institute Scientific Statement. Circulation. (2005)
PubMed: 16157765 DOI: 10.1161/CIRCULATIONAHA.105.169404

Lim Y et al., Obesity and Comorbid Conditions StatPearls Publishing. (2024)
PubMed: 34662049 

Álvez MB et al., Next generation pan-cancer blood proteome profiling using proximity extension assay. Nat Commun. (2023)
PubMed: 37463882 DOI: 10.1038/s41467-023-39765-y

Kotol D et al., Absolute Quantification of Pan-Cancer Plasma Proteomes Reveals Unique Signature in Multiple Myeloma. Cancers (Basel). (2023)
PubMed: 37835457 DOI: 10.3390/cancers15194764

Wik L et al., Proximity Extension Assay in Combination with Next-Generation Sequencing for High-throughput Proteome-wide Analysis. Mol Cell Proteomics. (2021)
PubMed: 34715355 DOI: 10.1016/j.mcpro.2021.100168

Ritchie ME et al., limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. (2015)
PubMed: 25605792 DOI: 10.1093/nar/gkv007

Zeiler M et al., A Protein Epitope Signature Tag (PrEST) library allows SILAC-based absolute quantification and multiplexed determination of protein copy numbers in cell lines. Mol Cell Proteomics. (2012)
PubMed: 21964433 DOI: 10.1074/mcp.O111.009613

Haki M et al., Review of multiple sclerosis: Epidemiology, etiology, pathophysiology, and treatment. Medicine (Baltimore). (2024)
PubMed: 38394496 DOI: 10.1097/MD.0000000000037297

Doshi A et al., Multiple sclerosis, a treatable disease. Clin Med (Lond). (2016)
PubMed: 27956442 DOI: 10.7861/clinmedicine.16-6-s53

Dobson R et al., Multiple sclerosis - a review. Eur J Neurol. (2019)
PubMed: 30300457 DOI: 10.1111/ene.13819

Lundberg IE et al., Classification of myositis. Nat Rev Rheumatol. (2018)
PubMed: 29651121 DOI: 10.1038/nrrheum.2018.41

Ashton C et al., Idiopathic inflammatory myopathies: a review. Intern Med J. (2021)
PubMed: 34155760 DOI: 10.1111/imj.15358

Panuganti KK et al., Obesity StatPearls Publishing. (2024)
PubMed: 29083734 

Blüher M., Obesity: global epidemiology and pathogenesis. Nat Rev Endocrinol. (2019)
PubMed: 30814686 DOI: 10.1038/s41574-019-0176-8

Brod M et al., Development of the Weight-Related Sign and Symptom Measure. J Patient Rep Outcomes. (2017)
PubMed: 29757304 DOI: 10.1186/s41687-018-0042-9

Ghesmaty Sangachin M et al., Use of various obesity measurement and classification methods in occupational safety and health research: a systematic review of the literature. BMC Obes. (2018)
PubMed: 30410773 DOI: 10.1186/s40608-018-0205-5

Arora T et al., Epithelial Ovarian Cancer StatPearls Publishing. (2024)
PubMed: 33620837 

Zhang R et al., Molecular Biomarkers for the Early Detection of Ovarian Cancer. Int J Mol Sci. (2022)
PubMed: 36233339 DOI: 10.3390/ijms231912041

Penny SM., Ovarian Cancer: An Overview. Radiol Technol. (2020)
PubMed: 32606233 

Ilic M et al., Epidemiology of pancreatic cancer. World J Gastroenterol. (2016)
PubMed: 27956793 DOI: 10.3748/wjg.v22.i44.9694

Leblond P et al., Toward Improved Diagnosis Accuracy and Treatment of Children, Adolescents, and Young Adults With Ependymoma: The International SIOP Ependymoma II Protocol. Front Neurol. (2022)
PubMed: 35720069 DOI: 10.3389/fneur.2022.887544

Tauziède-Espariat A et al., Pediatric meningiomas: A literature review and diagnostic update. Neurooncol Adv. (2023)
PubMed: 37287580 DOI: 10.1093/noajnl/vdac165

Campen CJ et al., Optic Pathway Gliomas in Neurofibromatosis Type 1. J Child Neurol. (2018)
PubMed: 29246098 DOI: 10.1177/0883073817739509

Oronsky B et al., Nothing But NET: A Review of Neuroendocrine Tumors and Carcinomas. Neoplasia. (2017)
PubMed: 29091800 DOI: 10.1016/j.neo.2017.09.002

Smolen JS et al., Rheumatoid arthritis. Lancet. (2016)
PubMed: 27156434 DOI: 10.1016/S0140-6736(16)30173-8

Radu AF et al., Management of Rheumatoid Arthritis: An Overview. Cells. (2021)
PubMed: 34831081 DOI: 10.3390/cells10112857

Patel KR et al., Schizophrenia: overview and treatment options. P T. (2014)
PubMed: 25210417 

Carsons SE et al., Sjogren Syndrome StatPearls Publishing. (2024)
PubMed: 28613703 

Jonsson R et al., Current concepts on Sjögren's syndrome - classification criteria and biomarkers. Eur J Oral Sci. (2018)
PubMed: 30178554 DOI: 10.1111/eos.12536

Gonzáles-Yovera JG et al., Diagnosis and management of small bowel neuroendocrine tumors: A state-of-the-art. World J Methodol. (2022)
PubMed: 36186753 DOI: 10.5662/wjm.v12.i5.381

Tong SY et al., Staphylococcus aureus infections: epidemiology, pathophysiology, clinical manifestations, and management. Clin Microbiol Rev. (2015)
PubMed: 26016486 DOI: 10.1128/CMR.00134-14

Abraham L et al., Bacteremia: Contemporary Management. Mo Med. (2020)
PubMed: 32848271 

Bruun T et al., Risk Factors and Predictors of Mortality in Streptococcal Necrotizing Soft-tissue Infections: A Multicenter Prospective Study. Clin Infect Dis. (2021)
PubMed: 31923305 DOI: 10.1093/cid/ciaa027

Hua C et al., Necrotising soft-tissue infections. Lancet Infect Dis. (2023)
PubMed: 36252579 DOI: 10.1016/S1473-3099(22)00583-7

Peetermans M et al., Necrotizing skin and soft-tissue infections in the intensive care unit. Clin Microbiol Infect. (2020)
PubMed: 31284035 DOI: 10.1016/j.cmi.2019.06.031

Madsen MB et al., Patient's characteristics and outcomes in necrotising soft-tissue infections: results from a Scandinavian, multicentre, prospective cohort study. Intensive Care Med. (2019)
PubMed: 31440795 DOI: 10.1007/s00134-019-05730-x

Yu H et al., Clinical and Immunological Biomarkers for Systemic Lupus Erythematosus. Biomolecules. (2021)
PubMed: 34206696 DOI: 10.3390/biom11070928

Siegel CH et al., Systemic Lupus Erythematosus: A Review. JAMA. (2024)
PubMed: 38587826 DOI: 10.1001/jama.2024.2315

Lazar S et al., Systemic Lupus Erythematosus: New Diagnostic and Therapeutic Approaches. Annu Rev Med. (2023)
PubMed: 35804480 DOI: 10.1146/annurev-med-043021-032611

Volkmann ER et al., Systemic sclerosis. Lancet. (2023)
PubMed: 36442487 DOI: 10.1016/S0140-6736(22)01692-0

Peoples C et al., Gender differences in systemic sclerosis: relationship to clinical features, serologic status and outcomes. J Scleroderma Relat Disord. (2016)
PubMed: 29242839 DOI: 10.5301/jsrd.5000209

Ahlqvist E et al., Novel subgroups of adult-onset diabetes and their association with outcomes: a data-driven cluster analysis of six variables. Lancet Diabetes Endocrinol. (2018)
PubMed: 29503172 DOI: 10.1016/S2213-8587(18)30051-2

American Diabetes Association., 2. Classification and Diagnosis of Diabetes: . Diabetes Care. (2021)
PubMed: 33298413 DOI: 10.2337/dc21-S002

Zheng Y et al., Global aetiology and epidemiology of type 2 diabetes mellitus and its complications. Nat Rev Endocrinol. (2018)
PubMed: 29219149 DOI: 10.1038/nrendo.2017.151

Khan MAB et al., Epidemiology of Type 2 Diabetes - Global Burden of Disease and Forecasted Trends. J Epidemiol Glob Health. (2020)
PubMed: 32175717 DOI: 10.2991/jegh.k.191028.001

Sharma A et al., Chronic Liver Disease StatPearls Publishing. (2024)
PubMed: 32119484 

Nelson NP et al., Epidemiology of Hepatitis B Virus Infection and Impact of Vaccination on Disease. Clin Liver Dis. (2016)
PubMed: 27742003 DOI: 10.1016/j.cld.2016.06.006

Uhlen M et al., A genome-wide transcriptomic analysis of protein-coding genes in human blood cells. Science. (2019)
PubMed: 31857451 DOI: 10.1126/science.aax9198

Hikmet F et al., The protein expression profile of ACE2 in human tissues. Mol Syst Biol. (2020)
PubMed: 32715618 DOI: 10.15252/msb.20209610

Gordon DE et al., A SARS-CoV-2 protein interaction map reveals targets for drug repurposing. Nature. (2020)
PubMed: 32353859 DOI: 10.1038/s41586-020-2286-9

Karlsson M et al., A single-cell type transcriptomics map of human tissues. Sci Adv. (2021)
PubMed: 34321199 DOI: 10.1126/sciadv.abh2169

Smolders J et al., Tissue-resident memory T cells populate the human brain. Nat Commun. (2018)
PubMed: 30389931 DOI: 10.1038/s41467-018-07053-9

Jain RW et al., B cells in central nervous system disease: diversity, locations and pathophysiology. Nat Rev Immunol. (2022)
PubMed: 34903877 DOI: 10.1038/s41577-021-00652-6

Waller R et al., Iba-1-/CD68+ microglia are a prominent feature of age-associated deep subcortical white matter lesions. PLoS One. (2019)
PubMed: 30682074 DOI: 10.1371/journal.pone.0210888

Buchanan J et al., Oligodendrocyte precursor cells ingest axons in the mouse neocortex. Proc Natl Acad Sci U S A. (2022)
PubMed: 36417438 DOI: 10.1073/pnas.2202580119

Fang M et al., The committed oligodendrocyte precursor cell, a newly-defined intermediate progenitor cell type in oligodendroglial lineage. Glia. (2023)
PubMed: 37278537 DOI: 10.1002/glia.24426

Duan L et al., Fibroblasts: New players in the central nervous system? Fundam Res. (2024)
PubMed: 38933505 DOI: 10.1016/j.fmre.2023.01.014

Lendahl U et al., Identification, discrimination and heterogeneity of fibroblasts. Nat Commun. (2022)
PubMed: 35701396 DOI: 10.1038/s41467-022-30633-9

Wong FK et al., Serotonergic regulation of bipolar cell survival in the developing cerebral cortex. Cell Rep. (2022)
PubMed: 35793629 DOI: 10.1016/j.celrep.2022.111037

Lv X et al., TBR2 coordinates neurogenesis expansion and precise microcircuit organization via Protocadherin 19 in the mammalian cortex. Nat Commun. (2019)
PubMed: 31477701 DOI: 10.1038/s41467-019-11854-x

Robinson JL et al., An atlas of human metabolism. Sci Signal. (2020)
PubMed: 32209698 DOI: 10.1126/scisignal.aaz1482

Jumper J et al., Highly accurate protein structure prediction with AlphaFold. Nature. (2021)
PubMed: 34265844 DOI: 10.1038/s41586-021-03819-2

Varadi M et al., AlphaFold Protein Structure Database: massively expanding the structural coverage of protein-sequence space with high-accuracy models. Nucleic Acids Res. (2022)
PubMed: 34791371 DOI: 10.1093/nar/gkab1061

Cheng J et al., Accurate proteome-wide missense variant effect prediction with AlphaMissense. Science. (2023)
PubMed: 37733863 DOI: 10.1126/science.adg7492

Pollard TD et al., Actin, a central player in cell shape and movement. Science. (2009)
PubMed: 19965462 DOI: 10.1126/science.1175862

Mitchison TJ et al., Actin-based cell motility and cell locomotion. Cell. (1996)
PubMed: 8608590 

Pollard TD et al., Molecular Mechanism of Cytokinesis. Annu Rev Biochem. (2019)
PubMed: 30649923 DOI: 10.1146/annurev-biochem-062917-012530

dos Remedios CG et al., Actin binding proteins: regulation of cytoskeletal microfilaments. Physiol Rev. (2003)
PubMed: 12663865 DOI: 10.1152/physrev.00026.2002

Campellone KG et al., A nucleator arms race: cellular control of actin assembly. Nat Rev Mol Cell Biol. (2010)
PubMed: 20237478 DOI: 10.1038/nrm2867

Rottner K et al., Actin assembly mechanisms at a glance. J Cell Sci. (2017)
PubMed: 29032357 DOI: 10.1242/jcs.206433

Bird RP., Observation and quantification of aberrant crypts in the murine colon treated with a colon carcinogen: preliminary findings. Cancer Lett. (1987)
PubMed: 3677050 DOI: 10.1016/0304-3835(87)90157-1

HUXLEY AF et al., Structural changes in muscle during contraction; interference microscopy of living muscle fibres. Nature. (1954)
PubMed: 13165697 

HUXLEY H et al., Changes in the cross-striations of muscle during contraction and stretch and their structural interpretation. Nature. (1954)
PubMed: 13165698 

Svitkina T., The Actin Cytoskeleton and Actin-Based Motility. Cold Spring Harb Perspect Biol. (2018)
PubMed: 29295889 DOI: 10.1101/cshperspect.a018267

Malumbres M et al., Cell cycle, CDKs and cancer: a changing paradigm. Nat Rev Cancer. (2009)
PubMed: 19238148 DOI: 10.1038/nrc2602

Massagué J., G1 cell-cycle control and cancer. Nature. (2004)
PubMed: 15549091 DOI: 10.1038/nature03094

Hartwell LH et al., Cell cycle control and cancer. Science. (1994)
PubMed: 7997877 DOI: 10.1126/science.7997877

Barnum KJ et al., Cell cycle regulation by checkpoints. Methods Mol Biol. (2014)
PubMed: 24906307 DOI: 10.1007/978-1-4939-0888-2_2

Weinberg RA., The retinoblastoma protein and cell cycle control. Cell. (1995)
PubMed: 7736585 DOI: 10.1016/0092-8674(95)90385-2

Morgan DO., Principles of CDK regulation. Nature. (1995)
PubMed: 7877684 DOI: 10.1038/374131a0

Teixeira LK et al., Ubiquitin ligases and cell cycle control. Annu Rev Biochem. (2013)
PubMed: 23495935 DOI: 10.1146/annurev-biochem-060410-105307

King RW et al., How proteolysis drives the cell cycle. Science. (1996)
PubMed: 8939846 DOI: 10.1126/science.274.5293.1652

Cho RJ et al., Transcriptional regulation and function during the human cell cycle. Nat Genet. (2001)
PubMed: 11137997 DOI: 10.1038/83751

Whitfield ML et al., Identification of genes periodically expressed in the human cell cycle and their expression in tumors. Mol Biol Cell. (2002)
PubMed: 12058064 DOI: 10.1091/mbc.02-02-0030.

Boström J et al., Comparative cell cycle transcriptomics reveals synchronization of developmental transcription factor networks in cancer cells. PLoS One. (2017)
PubMed: 29228002 DOI: 10.1371/journal.pone.0188772

Lane KR et al., Cell cycle-regulated protein abundance changes in synchronously proliferating HeLa cells include regulation of pre-mRNA splicing proteins. PLoS One. (2013)
PubMed: 23520512 DOI: 10.1371/journal.pone.0058456

Ohta S et al., The protein composition of mitotic chromosomes determined using multiclassifier combinatorial proteomics. Cell. (2010)
PubMed: 20813266 DOI: 10.1016/j.cell.2010.07.047

Ly T et al., A proteomic chronology of gene expression through the cell cycle in human myeloid leukemia cells. Elife. (2014)
PubMed: 24596151 DOI: 10.7554/eLife.01630

Pagliuca FW et al., Quantitative proteomics reveals the basis for the biochemical specificity of the cell-cycle machinery. Mol Cell. (2011)
PubMed: 21816347 DOI: 10.1016/j.molcel.2011.05.031

Ly T et al., Proteomic analysis of the response to cell cycle arrests in human myeloid leukemia cells. Elife. (2015)
PubMed: 25555159 DOI: 10.7554/eLife.04534

Mahdessian D et al., Spatiotemporal dissection of the cell cycle with single-cell proteogenomics. Nature. (2021)
PubMed: 33627808 DOI: 10.1038/s41586-021-03232-9

Dueck H et al., Variation is function: Are single cell differences functionally important?: Testing the hypothesis that single cell variation is required for aggregate function. Bioessays. (2016)
PubMed: 26625861 DOI: 10.1002/bies.201500124

Snijder B et al., Origins of regulated cell-to-cell variability. Nat Rev Mol Cell Biol. (2011)
PubMed: 21224886 DOI: 10.1038/nrm3044

Thul PJ et al., A subcellular map of the human proteome. Science. (2017)
PubMed: 28495876 DOI: 10.1126/science.aal3321

Cooper S et al., Membrane-elution analysis of content of cyclins A, B1, and E during the unperturbed mammalian cell cycle. Cell Div. (2007)
PubMed: 17892542 DOI: 10.1186/1747-1028-2-28

Davis PK et al., Biological methods for cell-cycle synchronization of mammalian cells. Biotechniques. (2001)
PubMed: 11414226 DOI: 10.2144/01306rv01

Domenighetti G et al., Effect of information campaign by the mass media on hysterectomy rates. Lancet. (1988)
PubMed: 2904581 DOI: 10.1016/s0140-6736(88)90943-9

Scialdone A et al., Computational assignment of cell-cycle stage from single-cell transcriptome data. Methods. (2015)
PubMed: 26142758 DOI: 10.1016/j.ymeth.2015.06.021

Sakaue-Sawano A et al., Visualizing spatiotemporal dynamics of multicellular cell-cycle progression. Cell. (2008)
PubMed: 18267078 DOI: 10.1016/j.cell.2007.12.033

Grant GD et al., Identification of cell cycle-regulated genes periodically expressed in U2OS cells and their regulation by FOXM1 and E2F transcription factors. Mol Biol Cell. (2013)
PubMed: 24109597 DOI: 10.1091/mbc.E13-05-0264

Semple JW et al., An essential role for Orc6 in DNA replication through maintenance of pre-replicative complexes. EMBO J. (2006)
PubMed: 17053779 DOI: 10.1038/sj.emboj.7601391

Nigg EA et al., The centrosome cycle: Centriole biogenesis, duplication and inherent asymmetries. Nat Cell Biol. (2011)
PubMed: 21968988 DOI: 10.1038/ncb2345

Doxsey S., Re-evaluating centrosome function. Nat Rev Mol Cell Biol. (2001)
PubMed: 11533726 DOI: 10.1038/35089575

Bornens M., Centrosome composition and microtubule anchoring mechanisms. Curr Opin Cell Biol. (2002)
PubMed: 11792541 

Conduit PT et al., Centrosome function and assembly in animal cells. Nat Rev Mol Cell Biol. (2015)
PubMed: 26373263 DOI: 10.1038/nrm4062

Tollenaere MA et al., Centriolar satellites: key mediators of centrosome functions. Cell Mol Life Sci. (2015)
PubMed: 25173771 DOI: 10.1007/s00018-014-1711-3

Prosser SL et al., Centriolar satellite biogenesis and function in vertebrate cells. J Cell Sci. (2020)
PubMed: 31896603 DOI: 10.1242/jcs.239566

Rieder CL et al., The centrosome in vertebrates: more than a microtubule-organizing center. Trends Cell Biol. (2001)
PubMed: 11567874 

Badano JL et al., The centrosome in human genetic disease. Nat Rev Genet. (2005)
PubMed: 15738963 DOI: 10.1038/nrg1557

Clegg JS., Properties and metabolism of the aqueous cytoplasm and its boundaries. Am J Physiol. (1984)
PubMed: 6364846 

Luby-Phelps K., The physical chemistry of cytoplasm and its influence on cell function: an update. Mol Biol Cell. (2013)
PubMed: 23989722 DOI: 10.1091/mbc.E12-08-0617

Luby-Phelps K., Cytoarchitecture and physical properties of cytoplasm: volume, viscosity, diffusion, intracellular surface area. Int Rev Cytol. (2000)
PubMed: 10553280 

Ellis RJ., Macromolecular crowding: obvious but underappreciated. Trends Biochem Sci. (2001)
PubMed: 11590012 

Bright GR et al., Fluorescence ratio imaging microscopy: temporal and spatial measurements of cytoplasmic pH. J Cell Biol. (1987)
PubMed: 3558476 

Kopito RR., Aggresomes, inclusion bodies and protein aggregation. Trends Cell Biol. (2000)
PubMed: 11121744 

Aizer A et al., Intracellular trafficking and dynamics of P bodies. Prion. (2008)
PubMed: 19242093 

Carcamo WC et al., Molecular cell biology and immunobiology of mammalian rod/ring structures. Int Rev Cell Mol Biol. (2014)
PubMed: 24411169 DOI: 10.1016/B978-0-12-800097-7.00002-6

Lang F., Mechanisms and significance of cell volume regulation. J Am Coll Nutr. (2007)
PubMed: 17921474 

Becht E et al., Dimensionality reduction for visualizing single-cell data using UMAP. Nat Biotechnol. (2018)
PubMed: 30531897 DOI: 10.1038/nbt.4314

Schwarz DS et al., The endoplasmic reticulum: structure, function and response to cellular signaling. Cell Mol Life Sci. (2016)
PubMed: 26433683 DOI: 10.1007/s00018-015-2052-6

Friedman JR et al., The ER in 3D: a multifunctional dynamic membrane network. Trends Cell Biol. (2011)
PubMed: 21900009 DOI: 10.1016/j.tcb.2011.07.004

Travers KJ et al., Functional and genomic analyses reveal an essential coordination between the unfolded protein response and ER-associated degradation. Cell. (2000)
PubMed: 10847680 

Roussel BD et al., Endoplasmic reticulum dysfunction in neurological disease. Lancet Neurol. (2013)
PubMed: 23237905 DOI: 10.1016/S1474-4422(12)70238-7

Neve EP et al., Cytochrome P450 proteins: retention and distribution from the endoplasmic reticulum. Curr Opin Drug Discov Devel. (2010)
PubMed: 20047148 

Kulkarni-Gosavi P et al., Form and function of the Golgi apparatus: scaffolds, cytoskeleton and signalling. FEBS Lett. (2019)
PubMed: 31378930 DOI: 10.1002/1873-3468.13567

Short B et al., The Golgi apparatus. Curr Biol. (2000)
PubMed: 10985372 DOI: 10.1016/s0960-9822(00)00644-8

Wei JH et al., Unraveling the Golgi ribbon. Traffic. (2010)
PubMed: 21040294 DOI: 10.1111/j.1600-0854.2010.01114.x

Wilson C et al., The Golgi apparatus: an organelle with multiple complex functions. Biochem J. (2011)
PubMed: 21158737 DOI: 10.1042/BJ20101058

Farquhar MG et al., The Golgi apparatus: 100 years of progress and controversy. Trends Cell Biol. (1998)
PubMed: 9695800 

Brandizzi F et al., Organization of the ER-Golgi interface for membrane traffic control. Nat Rev Mol Cell Biol. (2013)
PubMed: 23698585 DOI: 10.1038/nrm3588

Potelle S et al., Golgi post-translational modifications and associated diseases. J Inherit Metab Dis. (2015)
PubMed: 25967285 DOI: 10.1007/s10545-015-9851-7

Yoon TY et al., SNARE complex assembly and disassembly. Curr Biol. (2018)
PubMed: 29689222 DOI: 10.1016/j.cub.2018.01.005

Leduc C et al., Intermediate filaments in cell migration and invasion: the unusual suspects. Curr Opin Cell Biol. (2015)
PubMed: 25660489 DOI: 10.1016/j.ceb.2015.01.005

Lowery J et al., Intermediate Filaments Play a Pivotal Role in Regulating Cell Architecture and Function. J Biol Chem. (2015)
PubMed: 25957409 DOI: 10.1074/jbc.R115.640359

Robert A et al., Intermediate filament dynamics: What we can see now and why it matters. Bioessays. (2016)
PubMed: 26763143 DOI: 10.1002/bies.201500142

Fuchs E et al., Intermediate filaments: structure, dynamics, function, and disease. Annu Rev Biochem. (1994)
PubMed: 7979242 DOI: 10.1146/annurev.bi.63.070194.002021

Janmey PA et al., Viscoelastic properties of vimentin compared with other filamentous biopolymer networks. J Cell Biol. (1991)
PubMed: 2007620 

Köster S et al., Intermediate filament mechanics in vitro and in the cell: from coiled coils to filaments, fibers and networks. Curr Opin Cell Biol. (2015)
PubMed: 25621895 DOI: 10.1016/j.ceb.2015.01.001

Herrmann H et al., Intermediate filaments: from cell architecture to nanomechanics. Nat Rev Mol Cell Biol. (2007)
PubMed: 17551517 DOI: 10.1038/nrm2197

Gauster M et al., Keratins in the human trophoblast. Histol Histopathol. (2013)
PubMed: 23450430 DOI: 10.14670/HH-28.817

Ouyang W et al., Analysis of the Human Protein Atlas Image Classification competition. Nat Methods. (2019)
PubMed: 31780840 DOI: 10.1038/s41592-019-0658-6

Li F et al., GotEnzymes: an extensive database of enzyme parameter predictions. Nucleic Acids Res. (2023)
PubMed: 36169223 DOI: 10.1093/nar/gkac831

Bar-Peled L et al., Principles and functions of metabolic compartmentalization. Nat Metab. (2022)
PubMed: 36266543 DOI: 10.1038/s42255-022-00645-2

Song J et al., Assembling the mitochondrial ATP synthase. Proc Natl Acad Sci U S A. (2018)
PubMed: 29514954 DOI: 10.1073/pnas.1801697115

Maxfield FR et al., Cholesterol, the central lipid of mammalian cells. Curr Opin Cell Biol. (2010)
PubMed: 20627678 DOI: 10.1016/j.ceb.2010.05.004

Janke C., The tubulin code: molecular components, readout mechanisms, and functions. J Cell Biol. (2014)
PubMed: 25135932 DOI: 10.1083/jcb.201406055

Goodson HV et al., Microtubules and Microtubule-Associated Proteins. Cold Spring Harb Perspect Biol. (2018)
PubMed: 29858272 DOI: 10.1101/cshperspect.a022608

Wade RH., On and around microtubules: an overview. Mol Biotechnol. (2009)
PubMed: 19565362 DOI: 10.1007/s12033-009-9193-5

Desai A et al., Microtubule polymerization dynamics. Annu Rev Cell Dev Biol. (1997)
PubMed: 9442869 DOI: 10.1146/annurev.cellbio.13.1.83

Conde C et al., Microtubule assembly, organization and dynamics in axons and dendrites. Nat Rev Neurosci. (2009)
PubMed: 19377501 DOI: 10.1038/nrn2631

Wloga D et al., Post-translational modifications of microtubules. J Cell Sci. (2010)
PubMed: 20930140 DOI: 10.1242/jcs.063727

Schmoranzer J et al., Role of microtubules in fusion of post-Golgi vesicles to the plasma membrane. Mol Biol Cell. (2003)
PubMed: 12686609 DOI: 10.1091/mbc.E02-08-0500

Skop AR et al., Dissection of the mammalian midbody proteome reveals conserved cytokinesis mechanisms. Science. (2004)
PubMed: 15166316 DOI: 10.1126/science.1097931

Waters AM et al., Ciliopathies: an expanding disease spectrum. Pediatr Nephrol. (2011)
PubMed: 21210154 DOI: 10.1007/s00467-010-1731-7

Matamoros AJ et al., Microtubules in health and degenerative disease of the nervous system. Brain Res Bull. (2016)
PubMed: 27365230 DOI: 10.1016/j.brainresbull.2016.06.016

Jordan MA et al., Microtubules as a target for anticancer drugs. Nat Rev Cancer. (2004)
PubMed: 15057285 DOI: 10.1038/nrc1317

Nunnari J et al., Mitochondria: in sickness and in health. Cell. (2012)
PubMed: 22424226 DOI: 10.1016/j.cell.2012.02.035

Friedman JR et al., Mitochondrial form and function. Nature. (2014)
PubMed: 24429632 DOI: 10.1038/nature12985

Calvo SE et al., The mitochondrial proteome and human disease. Annu Rev Genomics Hum Genet. (2010)
PubMed: 20690818 DOI: 10.1146/annurev-genom-082509-141720

McBride HM et al., Mitochondria: more than just a powerhouse. Curr Biol. (2006)
PubMed: 16860735 DOI: 10.1016/j.cub.2006.06.054

Schaefer AM et al., The epidemiology of mitochondrial disorders--past, present and future. Biochim Biophys Acta. (2004)
PubMed: 15576042 DOI: 10.1016/j.bbabio.2004.09.005

Lange A et al., Classical nuclear localization signals: definition, function, and interaction with importin alpha. J Biol Chem. (2007)
PubMed: 17170104 DOI: 10.1074/jbc.R600026200

Ashmarina LI et al., 3-Hydroxy-3-methylglutaryl coenzyme A lyase: targeting and processing in peroxisomes and mitochondria. J Lipid Res. (1999)
PubMed: 9869651 

Wang SC et al., Nuclear translocation of the epidermal growth factor receptor family membrane tyrosine kinase receptors. Clin Cancer Res. (2009)
PubMed: 19861462 DOI: 10.1158/1078-0432.CCR-08-2813

Jeffery CJ., Moonlighting proteins. Trends Biochem Sci. (1999)
PubMed: 10087914 

Jeffery CJ., Why study moonlighting proteins? Front Genet. (2015)
PubMed: 26150826 DOI: 10.3389/fgene.2015.00211

Pancholi V., Multifunctional alpha-enolase: its role in diseases. Cell Mol Life Sci. (2001)
PubMed: 11497239 DOI: 10.1007/pl00000910

Chapple CE et al., Extreme multifunctional proteins identified from a human protein interaction network. Nat Commun. (2015)
PubMed: 26054620 DOI: 10.1038/ncomms8412

Dechat T et al., Nuclear lamins: major factors in the structural organization and function of the nucleus and chromatin. Genes Dev. (2008)
PubMed: 18381888 DOI: 10.1101/gad.1652708

Gruenbaum Y et al., The nuclear lamina comes of age. Nat Rev Mol Cell Biol. (2005)
PubMed: 15688064 DOI: 10.1038/nrm1550

Stuurman N et al., Nuclear lamins: their structure, assembly, and interactions. J Struct Biol. (1998)
PubMed: 9724605 DOI: 10.1006/jsbi.1998.3987

Paine PL et al., Nuclear envelope permeability. Nature. (1975)
PubMed: 1117994 

Reichelt R et al., Correlation between structure and mass distribution of the nuclear pore complex and of distinct pore complex components. J Cell Biol. (1990)
PubMed: 2324201 

CALLAN HG et al., Experimental studies on amphibian oocyte nuclei. I. Investigation of the structure of the nuclear membrane by means of the electron microscope. Proc R Soc Lond B Biol Sci. (1950)
PubMed: 14786306 

WATSON ML., The nuclear envelope; its structure and relation to cytoplasmic membranes. J Biophys Biochem Cytol. (1955)
PubMed: 13242591 

BAHR GF et al., The fine structure of the nuclear membrane in the larval salivary gland and midgut of Chironomus. Exp Cell Res. (1954)
PubMed: 13173504 

Terasaki M et al., A new model for nuclear envelope breakdown. Mol Biol Cell. (2001)
PubMed: 11179431 

Dultz E et al., Systematic kinetic analysis of mitotic dis- and reassembly of the nuclear pore in living cells. J Cell Biol. (2008)
PubMed: 18316408 DOI: 10.1083/jcb.200707026

Salina D et al., Cytoplasmic dynein as a facilitator of nuclear envelope breakdown. Cell. (2002)
PubMed: 11792324 

Beaudouin J et al., Nuclear envelope breakdown proceeds by microtubule-induced tearing of the lamina. Cell. (2002)
PubMed: 11792323 

Gerace L et al., The nuclear envelope lamina is reversibly depolymerized during mitosis. Cell. (1980)
PubMed: 7357605 

Ellenberg J et al., Nuclear membrane dynamics and reassembly in living cells: targeting of an inner nuclear membrane protein in interphase and mitosis. J Cell Biol. (1997)
PubMed: 9298976 

Yang L et al., Integral membrane proteins of the nuclear envelope are dispersed throughout the endoplasmic reticulum during mitosis. J Cell Biol. (1997)
PubMed: 9182656 

Bione S et al., Identification of a novel X-linked gene responsible for Emery-Dreifuss muscular dystrophy. Nat Genet. (1994)
PubMed: 7894480 DOI: 10.1038/ng1294-323

Boisvert FM et al., The multifunctional nucleolus. Nat Rev Mol Cell Biol. (2007)
PubMed: 17519961 DOI: 10.1038/nrm2184

Scheer U et al., Structure and function of the nucleolus. Curr Opin Cell Biol. (1999)
PubMed: 10395554 DOI: 10.1016/S0955-0674(99)80054-4

Németh A et al., Genome organization in and around the nucleolus. Trends Genet. (2011)
PubMed: 21295884 DOI: 10.1016/j.tig.2011.01.002

Cuylen S et al., Ki-67 acts as a biological surfactant to disperse mitotic chromosomes. Nature. (2016)
PubMed: 27362226 DOI: 10.1038/nature18610

Stenström L et al., Mapping the nucleolar proteome reveals a spatiotemporal organization related to intrinsic protein disorder. Mol Syst Biol. (2020)
PubMed: 32744794 DOI: 10.15252/msb.20209469

Visintin R et al., The nucleolus: the magician's hat for cell cycle tricks. Curr Opin Cell Biol. (2000)
PubMed: 10801456 

Marciniak RA et al., Nucleolar localization of the Werner syndrome protein in human cells. Proc Natl Acad Sci U S A. (1998)
PubMed: 9618508 

Tamanini F et al., The fragile X-related proteins FXR1P and FXR2P contain a functional nucleolar-targeting signal equivalent to the HIV-1 regulatory proteins. Hum Mol Genet. (2000)
PubMed: 10888599 

Willemsen R et al., Association of FMRP with ribosomal precursor particles in the nucleolus. Biochem Biophys Res Commun. (1996)
PubMed: 8769090 DOI: 10.1006/bbrc.1996.1126

Isaac C et al., Characterization of the nucleolar gene product, treacle, in Treacher Collins syndrome. Mol Biol Cell. (2000)
PubMed: 10982400 

Drygin D et al., The RNA polymerase I transcription machinery: an emerging target for the treatment of cancer. Annu Rev Pharmacol Toxicol. (2010)
PubMed: 20055700 DOI: 10.1146/annurev.pharmtox.010909.105844

Spector DL., Macromolecular domains within the cell nucleus. Annu Rev Cell Biol. (1993)
PubMed: 8280462 DOI: 10.1146/annurev.cb.09.110193.001405

Lamond AI et al., Structure and function in the nucleus. Science. (1998)
PubMed: 9554838 

SWIFT H., Studies on nuclear fine structure. Brookhaven Symp Biol. (1959)
PubMed: 13836127 

Lamond AI et al., Nuclear speckles: a model for nuclear organelles. Nat Rev Mol Cell Biol. (2003)
PubMed: 12923522 DOI: 10.1038/nrm1172

Thiry M., The interchromatin granules. Histol Histopathol. (1995)
PubMed: 8573995 

Sleeman JE et al., Newly assembled snRNPs associate with coiled bodies before speckles, suggesting a nuclear snRNP maturation pathway. Curr Biol. (1999)
PubMed: 10531003 

Darzacq X et al., Cajal body-specific small nuclear RNAs: a novel class of 2'-O-methylation and pseudouridylation guide RNAs. EMBO J. (2002)
PubMed: 12032087 DOI: 10.1093/emboj/21.11.2746

Jády BE et al., Modification of Sm small nuclear RNAs occurs in the nucleoplasmic Cajal body following import from the cytoplasm. EMBO J. (2003)
PubMed: 12682020 DOI: 10.1093/emboj/cdg187

Liu Q et al., A novel nuclear structure containing the survival of motor neurons protein. EMBO J. (1996)
PubMed: 8670859 

Lefebvre S et al., Identification and characterization of a spinal muscular atrophy-determining gene. Cell. (1995)
PubMed: 7813012 

Fischer U et al., The SMN-SIP1 complex has an essential role in spliceosomal snRNP biogenesis. Cell. (1997)
PubMed: 9323130 

Lallemand-Breitenbach V et al., PML nuclear bodies. Cold Spring Harb Perspect Biol. (2010)
PubMed: 20452955 DOI: 10.1101/cshperspect.a000661

Booth DG et al., Ki-67 and the Chromosome Periphery Compartment in Mitosis. Trends Cell Biol. (2017)
PubMed: 28838621 DOI: 10.1016/j.tcb.2017.08.001

Ljungberg O et al., A compound follicular-parafollicular cell carcinoma of the thyroid: a new tumor entity? Cancer. (1983)
PubMed: 6136320 DOI: 10.1002/1097-0142(19830915)52:6<1053::aid-cncr2820520621>3.0.co;2-q

Melcák I et al., Nuclear pre-mRNA compartmentalization: trafficking of released transcripts to splicing factor reservoirs. Mol Biol Cell. (2000)
PubMed: 10679009 

Spector DL et al., Associations between distinct pre-mRNA splicing components and the cell nucleus. EMBO J. (1991)
PubMed: 1833187 

Misteli T et al., Protein phosphorylation and the nuclear organization of pre-mRNA splicing. Trends Cell Biol. (1997)
PubMed: 17708924 DOI: 10.1016/S0962-8924(96)20043-1

Cmarko D et al., Ultrastructural analysis of transcription and splicing in the cell nucleus after bromo-UTP microinjection. Mol Biol Cell. (1999)
PubMed: 9880337 

Van Hooser AA et al., The perichromosomal layer. Chromosoma. (2005)
PubMed: 16136320 DOI: 10.1007/s00412-005-0021-9

Booth DG et al., Ki-67 is a PP1-interacting protein that organises the mitotic chromosome periphery. Elife. (2014)
PubMed: 24867636 DOI: 10.7554/eLife.01641

Kau TR et al., Nuclear transport and cancer: from mechanism to intervention. Nat Rev Cancer. (2004)
PubMed: 14732865 DOI: 10.1038/nrc1274

Laurila K et al., Prediction of disease-related mutations affecting protein localization. BMC Genomics. (2009)
PubMed: 19309509 DOI: 10.1186/1471-2164-10-122

Park S et al., Protein localization as a principal feature of the etiology and comorbidity of genetic diseases. Mol Syst Biol. (2011)
PubMed: 21613983 DOI: 10.1038/msb.2011.29

Christoforou A et al., A draft map of the mouse pluripotent stem cell spatial proteome. Nat Commun. (2016)
PubMed: 26754106 DOI: 10.1038/ncomms9992

Itzhak DN et al., Global, quantitative and dynamic mapping of protein subcellular localization. Elife. (2016)
PubMed: 27278775 DOI: 10.7554/eLife.16950

Roux KJ et al., A promiscuous biotin ligase fusion protein identifies proximal and interacting proteins in mammalian cells. J Cell Biol. (2012)
PubMed: 22412018 DOI: 10.1083/jcb.201112098

Lee SY et al., APEX Fingerprinting Reveals the Subcellular Localization of Proteins of Interest. Cell Rep. (2016)
PubMed: 27184847 DOI: 10.1016/j.celrep.2016.04.064

Huh WK et al., Global analysis of protein localization in budding yeast. Nature. (2003)
PubMed: 14562095 DOI: 10.1038/nature02026

Simpson JC et al., Systematic subcellular localization of novel proteins identified by large-scale cDNA sequencing. EMBO Rep. (2000)
PubMed: 11256614 DOI: 10.1093/embo-reports/kvd058

Stadler C et al., Immunofluorescence and fluorescent-protein tagging show high correlation for protein localization in mammalian cells. Nat Methods. 2013 Apr;10(4):315-23 (2013)
PubMed: 23435261 DOI: 10.1038/nmeth.2377

Barbe L et al., Toward a confocal subcellular atlas of the human proteome. Mol Cell Proteomics. (2008)
PubMed: 18029348 DOI: 10.1074/mcp.M700325-MCP200

Stadler C et al., A single fixation protocol for proteome-wide immunofluorescence localization studies. J Proteomics. (2010)
PubMed: 19896565 DOI: 10.1016/j.jprot.2009.10.012

Fagerberg L et al., Mapping the subcellular protein distribution in three human cell lines. J Proteome Res. (2011)
PubMed: 21675716 DOI: 10.1021/pr200379a

Baker M., Reproducibility crisis: Blame it on the antibodies. Nature. (2015)
PubMed: 25993940 DOI: 10.1038/521274a

Jacobson K et al., The Lateral Organization and Mobility of Plasma Membrane Components. Cell. (2019)
PubMed: 31051105 DOI: 10.1016/j.cell.2019.04.018

Kobayashi T et al., Transbilayer lipid asymmetry. Curr Biol. (2018)
PubMed: 29689220 DOI: 10.1016/j.cub.2018.01.007

Krapf D., Compartmentalization of the plasma membrane. Curr Opin Cell Biol. (2018)
PubMed: 29656224 DOI: 10.1016/j.ceb.2018.04.002

Garcia MA et al., Cell-Cell Junctions Organize Structural and Signaling Networks. Cold Spring Harb Perspect Biol. (2018)
PubMed: 28600395 DOI: 10.1101/cshperspect.a029181

Orlando K et al., Membrane organization and dynamics in cell polarity. Cold Spring Harb Perspect Biol. (2009)
PubMed: 20066116 DOI: 10.1101/cshperspect.a001321

Eaton RC et al., D2 receptors in the paraventricular nucleus regulate genital responses and copulation in male rats. Pharmacol Biochem Behav. (1991)
PubMed: 1833780 DOI: 10.1016/0091-3057(91)90418-2

Simons K et al., Cholesterol, lipid rafts, and disease. J Clin Invest. (2002)
PubMed: 12208858 DOI: 10.1172/JCI16390

Mill P et al., Primary cilia as dynamic and diverse signalling hubs in development and disease. Nat Rev Genet. (2023)
PubMed: 37072495 DOI: 10.1038/s41576-023-00587-9

Macarelli V et al., Regulation of the length of neuronal primary cilia and its potential effects on signalling. Trends Cell Biol. (2023)
PubMed: 37302961 DOI: 10.1016/j.tcb.2023.05.005

Satir P et al., The primary cilium at a glance. J Cell Sci. (2010)
PubMed: 20144997 DOI: 10.1242/jcs.050377

Taschner M et al., The Intraflagellar Transport Machinery. Cold Spring Harb Perspect Biol. (2016)
PubMed: 27352625 DOI: 10.1101/cshperspect.a028092

Nachury MV et al., Establishing and regulating the composition of cilia for signal transduction. Nat Rev Mol Cell Biol. (2019)
PubMed: 30948801 DOI: 10.1038/s41580-019-0116-4

Reiter JF et al., Genes and molecular pathways underpinning ciliopathies. Nat Rev Mol Cell Biol. (2017)
PubMed: 28698599 DOI: 10.1038/nrm.2017.60

Anvarian Z et al., Cellular signalling by primary cilia in development, organ function and disease. Nat Rev Nephrol. (2019)
PubMed: 30733609 DOI: 10.1038/s41581-019-0116-9