We use cookies to enhance the usability of our website. If you continue, we'll assume that you are happy to receive all cookies. More information. Don't show this again.
General description of the gene and the encoded protein(s) using information from HGNC and Ensembl, as well as predictions made by the Human Protein Atlas project.
Gene namei
Official gene symbol, which is typically a short form of the gene name, according to HGNC.
Assigned HPA protein class(es) for the encoded protein(s).
Cancer-related genes Enzymes Metabolic proteins
Predicted locationi
All transcripts of all genes have been analyzed regarding the location(s) of corresponding protein based on prediction methods for signal peptides and transmembrane regions.
Genes with at least one transcript predicted to encode a secreted protein, according to prediction methods or to UniProt location data, have been further annotated and classified with the aim to determine if the corresponding protein(s) are secreted or actually retained in intracellular locations or membrane-attached.
Remaining genes, with no transcript predicted to encode a secreted protein, will be assigned the prediction-based location(s).
The annotated location overrules the predicted location, so that a gene encoding a predicted secreted protein that has been annotated as intracellular will have intracellular as the final location.
Gene information from Ensembl and Entrez, as well as links to available gene identifiers are displayed here. Information was retrieved from Ensembl if not indicated otherwise.
Chromosome
11
Cytoband
q23.3
Chromosome location (bp)
117144284 - 117176894
Number of transcriptsi
Number of protein-coding transcripts from the gene as defined by Ensembl.
Useful information about the protein provided by UniProt.
Alpha2 catalytic subunit of the cytosolic type I platelet-activating factor (PAF) acetylhydrolase (PAF-AH (I)) heterotetrameric enzyme that catalyzes the hydrolyze of the acetyl group at the sn-2 position of PAF and its analogs and modulates the action of PAF. The activity and substrate specificity of PAF-AH (I) are affected by its subunit composition. The alpha2/alpha2 homodimer (PAFAH1B2/PAFAH1B2 homodimer) hydrolyzes PAF and 1-O-alkyl-2-acetyl-sn-glycero-3-phosphorylethanolamine (AAGPE) more efficiently than 1-O-alkyl-2-acetyl-sn-glycero-3-phosphoric acid (AAGPA). In contrast, the alpha1/alpha2 heterodimer(PAFAH1B3/PAFAH1B3 heterodimer) hydrolyzes AAGPA more efficiently than PAF, but has little hydrolytic activity towards AAGPE (By similarity). May play a role in male germ cell meiosis during the late pachytenestage and meiotic divisions as well as early spermiogenesis (By similarity)....show less
Molecular function (UniProt)i
Keywords assigned by UniProt to proteins due to their particular molecular function.
Hydrolase
Biological process (UniProt)i
Keywords assigned by UniProt to proteins because they are involved in a particular biological process.
Lipid degradation, Lipid metabolism
Gene summary (Entrez)i
Useful information about the gene from Entrez
Platelet-activating factor acetylhydrolase (PAFAH) inactivates platelet-activating factor (PAF) into acetate and LYSO-PAF. This gene encodes the beta subunit of PAFAH, the other subunits are alpha and gamma. Multiple alternatively spliced transcript variants have been described for this gene. [provided by RefSeq, Jan 2014]...show less
PROTEIN INFORMATIONi
The protein information section displays alternative protein-coding transcripts (splice variants) encoded by this gene according to the Ensembl database.
The Splice variant identifier links to the Ensembl website protein summary for the selected splice variant. The data in the Swissprot and TrEMBL columns links to corresponding pages in the UniProt database.
The protein classes assigned to this protein are shown if expanding the data in the protein class column. Parent protein classes are in bold font and subclasses are listed under the parent class.
The length of the protein (amino acid residues according to Ensembl), molecular mass (kDalton), predicted signal peptide and number of predicted transmembrane region(s) according to in-house majority decision methods based on sets of predictors are also reported.
Metabolic proteins Predicted intracellular proteins Intracellular proteins predicted by MDM and MDSEC Cancer-related genes COSMIC somatic mutations in cancer genes COSMIC Somatic Mutations COSMIC Translocations Protein evidence (Ezkurdia et al 2014)
Enzymes ENZYME proteins Hydrolases Metabolic proteins Predicted intracellular proteins Intracellular proteins predicted by MDM and MDSEC Cancer-related genes COSMIC somatic mutations in cancer genes COSMIC Somatic Mutations COSMIC Translocations Mapped to neXtProt neXtProt - Evidence at protein level Protein evidence (Kim et al 2014) Protein evidence (Ezkurdia et al 2014)
Enzymes ENZYME proteins Hydrolases Metabolic proteins Predicted intracellular proteins Intracellular proteins predicted by MDM and MDSEC Cancer-related genes COSMIC somatic mutations in cancer genes COSMIC Somatic Mutations COSMIC Translocations Mapped to neXtProt neXtProt - Evidence at protein level Protein evidence (Kim et al 2014) Protein evidence (Ezkurdia et al 2014)
Enzymes ENZYME proteins Hydrolases Metabolic proteins Predicted intracellular proteins Intracellular proteins predicted by MDM and MDSEC Cancer-related genes COSMIC somatic mutations in cancer genes COSMIC Somatic Mutations COSMIC Translocations Mapped to neXtProt neXtProt - Evidence at protein level Protein evidence (Kim et al 2014) Protein evidence (Ezkurdia et al 2014)
Enzymes ENZYME proteins Hydrolases Metabolic proteins Predicted intracellular proteins Intracellular proteins predicted by MDM and MDSEC Cancer-related genes COSMIC somatic mutations in cancer genes COSMIC Somatic Mutations COSMIC Translocations Mapped to neXtProt neXtProt - Evidence at protein level Protein evidence (Kim et al 2014) Protein evidence (Ezkurdia et al 2014)