We use cookies to enhance the usability of our website. If you continue, we'll assume that you are happy to receive all cookies. More information. Don't show this again.
General description of the gene and the encoded protein(s) using information from HGNC and Ensembl, as well as predictions made by the Human Protein Atlas project.
Gene namei
Official gene symbol, which is typically a short form of the gene name, according to HGNC.
All transcripts of all genes have been analyzed regarding the location(s) of corresponding protein based on prediction methods for signal peptides and transmembrane regions.
Genes with at least one transcript predicted to encode a secreted protein, according to prediction methods or to UniProt location data, have been further annotated and classified with the aim to determine if the corresponding protein(s) are secreted or actually retained in intracellular locations or membrane-attached.
Remaining genes, with no transcript predicted to encode a secreted protein, will be assigned the prediction-based location(s).
The annotated location overrules the predicted location, so that a gene encoding a predicted secreted protein that has been annotated as intracellular will have intracellular as the final location.
Gene information from Ensembl and Entrez, as well as links to available gene identifiers are displayed here. Information was retrieved from Ensembl if not indicated otherwise.
Chromosome
13
Cytoband
q32.1
Chromosome location (bp)
97221434 - 97394120
Number of transcriptsi
Number of protein-coding transcripts from the gene as defined by Ensembl.
Useful information about the protein provided by UniProt.
Mediates pre-mRNA alternative splicing regulation. Acts either as activator or repressor of splicing on specific pre-mRNA targets. Inhibits cardiac troponin-T (TNNT2) pre-mRNA exon inclusion but induces insulin receptor (IR) pre-mRNA exon inclusion in muscle. Antagonizes the alternative splicing activity pattern of CELF proteins. RNA-binding protein that binds to 5'ACACCC-3' core sequence, termed zipcode, within the 3'UTR of ITGA3. Binds to CUG triplet repeat expansion in myotonic dystrophy muscle cells by sequestering the target RNAs. Together with RNA binding proteins RBPMS and RBFOX2, activates vascular smooth muscle cells alternative splicing events (By similarity). Regulates NCOR2 alternative splicing (By similarity). Seems to regulate expression and localization of ITGA3 by transporting it from the nucleus to cytoplasm at adhesion plaques. May play a role in myotonic dystrophy pathophysiology (DM)....show less
Molecular function (UniProt)i
Keywords assigned by UniProt to proteins due to their particular molecular function.
RNA-binding
Biological process (UniProt)i
Keywords assigned by UniProt to proteins because they are involved in a particular biological process.
mRNA processing, mRNA splicing
Ligand (UniProt)i
Keywords assigned by UniProt to proteins because they bind, are associated with, or whose activity is dependent of some molecule.
Metal-binding, Zinc
Gene summary (Entrez)i
Useful information about the gene from Entrez
This gene is a member of the muscleblind protein family which was initially described in Drosophila melanogaster. This gene encodes a C3H-type zinc finger protein that modulates alternative splicing of pre-mRNAs. Muscleblind proteins bind specifically to expanded dsCUG RNA but not to normal size CUG repeats and may thereby play a role in the pathophysiology of myotonic dystrophy. Several alternatively spliced transcript variants have been described but the full-length natures of only some have been determined. [provided by RefSeq, Mar 2012]...show less
PROTEIN INFORMATIONi
The protein information section displays alternative protein-coding transcripts (splice variants) encoded by this gene according to the Ensembl database.
The Splice variant identifier links to the Ensembl website protein summary for the selected splice variant. The data in the Swissprot and TrEMBL columns links to corresponding pages in the UniProt database.
The protein classes assigned to this protein are shown if expanding the data in the protein class column. Parent protein classes are in bold font and subclasses are listed under the parent class.
The length of the protein (amino acid residues according to Ensembl), molecular mass (kDalton), predicted signal peptide and number of predicted transmembrane region(s) according to in-house majority decision methods based on sets of predictors are also reported.
Q5VZF2 [Direct mapping] Muscleblind-like protein 2
Show all
A2A3S3 [Target identity:100%; Query identity:100%] Muscleblind-like 2 (Drosophila), isoform CRA_a; cDNA FLJ76890, highly similar to Homo sapiens muscleblind-like 2 (Drosophila) (MBNL2), transcript variant 3, mRNA; cDNA, FLJ79493, highly similar to Homo sapiens muscleblind-like 2 (Drosophila) (MBNL2), transcript variant 3, mRNA
Show all
Predicted intracellular proteins Intracellular proteins predicted by MDM and MDSEC Mapped to neXtProt neXtProt - Evidence at protein level Protein evidence (Kim et al 2014) Protein evidence (Ezkurdia et al 2014)
Q5VZF2 [Direct mapping] Muscleblind-like protein 2
Show all
Predicted intracellular proteins Intracellular proteins predicted by MDM and MDSEC Mapped to neXtProt neXtProt - Evidence at protein level Protein evidence (Kim et al 2014) Protein evidence (Ezkurdia et al 2014)
Q5VZF2 [Direct mapping] Muscleblind-like protein 2
Show all
Predicted intracellular proteins Intracellular proteins predicted by MDM and MDSEC Mapped to neXtProt neXtProt - Evidence at protein level Protein evidence (Ezkurdia et al 2014)
Q5VZF2 [Direct mapping] Muscleblind-like protein 2
Show all
A2A3S3 [Target identity:100%; Query identity:100%] Muscleblind-like 2 (Drosophila), isoform CRA_a; cDNA FLJ76890, highly similar to Homo sapiens muscleblind-like 2 (Drosophila) (MBNL2), transcript variant 3, mRNA; cDNA, FLJ79493, highly similar to Homo sapiens muscleblind-like 2 (Drosophila) (MBNL2), transcript variant 3, mRNA
Show all
Predicted intracellular proteins Intracellular proteins predicted by MDM and MDSEC Mapped to neXtProt neXtProt - Evidence at protein level Protein evidence (Ezkurdia et al 2014)